Sharp upper and lower bounds for the gamma function

被引:27
作者
Alzer, Horst
机构
[1] 51545 Waldbröl
关键词
D O I
10.1017/S0308210508000644
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that fro all x > 0, we have root 2 pi x(x/e)(x) (x sinh 1/x)(x/2) (1 + alpha/x(5)) < Gamma(x + 1) < root 2 pi x(x/e)(x) (x sinh 1/x)(x/2) (1 + beta/x(5)) with the best possible constants alpha = 0 and beta = 1/1620.
引用
收藏
页码:709 / 718
页数:10
相关论文
共 11 条
[1]   On some inequalities for the gamma and psi functions [J].
Alzer, H .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :373-389
[2]   On Ramanujan's double inequality for the gamma function [J].
Alzer, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :601-607
[3]   Sharp bounds for the Bernoulli numbers [J].
Alzer, H .
ARCHIV DER MATHEMATIK, 2000, 74 (03) :207-211
[4]  
[Anonymous], 1948, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables, DOI DOI 10.1119/1.15378
[5]   On the asymptotic representation of the Euler gamma function by Ramanujan [J].
Karatsuba, EA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 135 (02) :225-240
[6]  
RAMANUJAN S, 1921, J INDIAN MATH SOC, V13, P151
[7]  
Ramanujan S., 1988, The Lost Notebook and Other Unpublished Papers
[8]  
RAMANUJAN S, 1916, J INDIAN MATH SOC, V8, P80
[9]  
RAMANUJAN S, 1920, J INDIAN MATH SOC, V12, P101
[10]  
TOTH VT, CALCULATORS GAMMA FU