The impedance characteristics of Mars Exploration Rover Li-ion batteries

被引:90
|
作者
Ratnakumar, B. V. [1 ]
Smart, M. C. [1 ]
Whitcanack, L. D. [1 ]
Ewell, R. C. [1 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
关键词
lithium-ion batteries; Mars Rovers; DC impedance; low temperature;
D O I
10.1016/j.jpowsour.2005.11.085
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Determination of the cell or battery impedance is critical to predicting and managing the battery performance, especially in a remote application such as in a spacecraft. While electrochemical impedance spectroscopy provides more quantitative and diverse information on the electrochemical processes, it is less informative in the absence of a reference electrode and/or more cumbersome in multi-cell batteries. DC impedance values, on the other hand, are relatively easy to implement and with subtle variations in the pulse conditions, i.e., pulse magnitude and pulse width, may provide useful trends in the ohmic, charge transfer and mass transfer components. In order to assess the impedance values of the Li-ion cells and batteries and their impact on the current-limiting series resistors in the Mars Exploration Rovers (MER), we, therefore, adopted DC methods under a variety of test conditions, i.e., magnitude and duration of the sampling current pulses, states of charge of the cells and batteries, as well as at different (low) temperatures. Understandably, higher current pluses tend to lower the contribution from the charge transfer, while longer pulses result in a higher share of the diffusional component in the overall impedance. Based on relatively simple analyses, we derived useful trends for the ohmic, charge transfer and mass transfer components of the cell impedance, as a function of temperature and obtained activation energies for these processes. Finally, these measurements assisted us in the assessment of risk associated with the series resistors during the launching of the Mars Rover missions. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:1428 / 1439
页数:12
相关论文
共 50 条
  • [21] Arcing in Li-Ion Batteries
    Ledinski, Theo
    Golubkov, Andrey W.
    Schweighofer, Oskar
    Erker, Simon
    BATTERIES-BASEL, 2023, 9 (11):
  • [22] Ultimate Li-ion batteries
    Cao, Deqing
    Chen, Yuhui
    SCIENCE BULLETIN, 2021, 66 (07) : 645 - 647
  • [23] The Age of Li-Ion Batteries
    Stephan, Alexandra K.
    JOULE, 2019, 3 (11) : 2583 - 2584
  • [24] Safer Li-ion batteries
    O'Driscoll, Cath
    CHEMISTRY & INDUSTRY, 2018, 82 (07) : 8 - 8
  • [25] Thermomanagement of Li-ion batteries
    Wiebelt, Achim
    Isermeyer, Tobias
    Siebrecht, Thomas
    Heckenberger, Thomas
    ATZ worldwide, 2009, 111 (7-8) : 12 - 15
  • [26] Influence of Graphite Characteristics on the Electrochemical Performance in Alkylcarbonate LiTFSI Electrolyte for Li-Ion Capacitors and Li-Ion Batteries
    Ghimbeu, Camelia Matei
    Decaux, Celine
    Brender, Patrice
    Dahbi, Mouad
    Lemordant, Daniel
    Raymundo-Pinero, Encarnacion
    Anouti, Meriem
    Beguin, Francois
    Vix-Guterl, Cathie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1907 - A1915
  • [27] Charging and discharging characteristics of Lead acid and Li-ion batteries
    Meena, Neetu
    Baharwani, Vishakha
    Sharma, Deepak
    Sharma, Arvind
    Choudhary, Bishnu
    Parmar, Piyush
    Stephen, Richie B.
    2014 POWER AND ENERGY SYSTEMS CONFERENCE: TOWARDS SUSTAINABLE ENERGY, 2014,
  • [28] Structure and characteristics study of graphite for anode of Li-ion batteries
    Guo, Hua-Jun
    Li, Xiang-Qun
    Li, Xin-Hai
    Wang, Zhi-Xing
    Dianchi/Battery, 2003, 33 (06):
  • [29] State-of-charge indication in Li-ion batteries by simulated impedance spectroscopy
    Brandell, Daniel (daniel.brandell@kemi.uu.se), 1600, Springer Science and Business Media B.V. (47):
  • [30] Operando electrochemical impedance spectroscopy and its application to commercial Li-ion batteries
    Hallemans, Noel
    Widanage, Widanalage Dhammika
    Zhu, Xinhua
    Moharana, Sanghamitra
    Rashid, Muhammad
    Hubin, Annick
    Lataire, John
    JOURNAL OF POWER SOURCES, 2022, 547