EXTREMAL DOMAINS FOR THE FIRST EIGENVALUE OF THE LAPLACE-BELTRAMI OPERATOR

被引:22
作者
Pacard, Frank [1 ]
Sicbaldi, Pieralberto [1 ]
机构
[1] Univ Paris Est, UFR Sci & Technol, F-94010 Creteil, France
关键词
Extremal domain; Laplace-Beltrami operator; first eigenvalue; scalar curvature; geodesic sphere; CURVATURE;
D O I
10.5802/aif.2438
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of extremal domains with small prescribed volume for the first eigenvalue of Laplace-Beltrami operator in some Riemannian manifold. These domains are close to geodesic spheres of small radius centered at a nondegenerate critical point of the scalar curvature.
引用
收藏
页码:515 / 542
页数:28
相关论文
共 13 条
[1]  
[Anonymous], 1994, C P LECT NOTES GEOME
[2]   Sharp local isoperimetric inequalities involving the scalar curvature [J].
Druet, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (08) :2351-2361
[3]   Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold [J].
El Soufi, Ahmad ;
Ilias, Said .
ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (02) :645-666
[4]  
Faber G., 1923, Sitz. Bayer Acad. Wiss., P169
[5]  
GARABEDIAN PR, 1953, J RATION MECH ANAL, V2, P137
[6]  
KRAHN E, 1926, ACTA COMM U TARTU A, V9
[7]  
KRAHN E, 1924, MATH ANN, V94
[8]   THE YAMABE PROBLEM [J].
LEE, JM ;
PARKER, TH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 17 (01) :37-91
[9]  
NARDULLI S, 2006, THESIS U PARIS 2
[10]  
PACARD F, CONSTANT MEAN CURVAT