10.5 W Time-Averaged Power Mid-IR Supercontinuum Generation Extending Beyond 4 μm With Direct Pulse Pattern Modulation

被引:130
作者
Xia, Chenan [1 ]
Xu, Zhao [1 ]
Islam, Mohammed N. [1 ,2 ]
Terry, Fred L., Jr. [1 ]
Freeman, Mike J. [2 ]
Zakel, Andy [2 ]
Mauricio, Jeremiah [2 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Omni Sci Inc, Ann Arbor, MI 48105 USA
关键词
Fiber laser; mid-IR; modulation; supercontinuum (SC); PHOTONIC CRYSTAL FIBERS; ZBLAN FLUORIDE FIBERS; FREE-ELECTRON-LASER; OPTICAL-FIBERS; PROPAGATION; SILICA; NM;
D O I
10.1109/JSTQE.2008.2010233
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel, all-fiber-integrated supercontinuum (SC) laser is demonstrated and provides up to 10.5 W time-averaged power with a continuous spectrum from similar to 0.8 to 4 mu m. The SC is generated in a combination of standard single-mode fibers and ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride fibers pumped by a laser-diode-based cladding-pumped fiber amplifier system. The output SC pulse pattern can be modulated by directly modulating the seed laser diode. Near-diffraction-limited beam qualities are maintained over the entire SC spectrum. The SC average power is also linearly scalable by varying the input pump power and pulse repetition rate. We further investigate the theoretical limitations on the achievable average power handling and spectral width for the SC generation in ZBLAN fibers. Based on the thermal modeling, the standard ZBLAN fiber can handle a time-averaged power up to similar to 15 W, which can be further scaled up to similar to 40 W with a proper thermal coating applied onto the ZBLAN fiber. The SC long-wavelength edge is limited by the nonlinear wavelength generation processes, fiber bend-induced loss, and glass material loss. By using a ZBLAN fiber with a 0.3 numerical aperture, the SC spectrum could extend out to similar to 4.5 mu m, which is then limited by the material loss.
引用
收藏
页码:422 / 434
页数:13
相关论文
共 33 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[2]  
Alfano R. R., 2006, The Supercontinuum Laser Source: Fundamentals with Updated References
[3]   Selective photothermolysis of lipid-rich tissues: A free electron laser study [J].
Anderson, R. Rox ;
Farinelli, William ;
Laubach, Hans ;
Manstein, Dieter ;
Yaroslavsky, Anna N. ;
Gubeli, Joseph, III ;
Jordan, Kevin ;
Neil, George R. ;
Shinn, Michelle ;
Chandler, Walter ;
Williams, Gwyn P. ;
Benson, Steven V. ;
Douglas, David R. ;
Dylla, H. F. .
LASERS IN SURGERY AND MEDICINE, 2006, 38 (10) :913-919
[4]   Dynamics of high-power erbium-ytterbium fiber amplifiers [J].
Canat, G ;
Mollier, JC ;
Bouzinac, JP ;
Williams, GM ;
Cole, B ;
Goldberg, L ;
Jaouën, Y .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (11) :2308-2318
[5]   Catastrophic destruction of fluoride and chalcogenide optical fibres [J].
Dianov, EM ;
Bufetov, IA ;
Frolov, AA ;
Mashinsky, VM ;
Plotnichenko, VG ;
Churbanov, MF ;
Snopatin, GE .
ELECTRONICS LETTERS, 2002, 38 (15) :783-784
[6]   Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb [J].
Diddams, SA ;
Jones, DJ ;
Ye, J ;
Cundiff, ST ;
Hall, JL ;
Ranka, JK ;
Windeler, RS ;
Holzwarth, R ;
Udem, T ;
Hänsch, TW .
PHYSICAL REVIEW LETTERS, 2000, 84 (22) :5102-5105
[7]   Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs [J].
Domachuk, P. ;
Wolchover, N. A. ;
Cronin-Golomb, M. ;
Wang, A. ;
George, A. K. ;
Cordeiro, C. M. B. ;
Knight, J. C. ;
Omenetto, F. G. .
OPTICS EXPRESS, 2008, 16 (10) :7161-7168
[8]   Free-electron-laser-based biophysical and biomedical instrumentation [J].
Edwards, GS ;
Austin, RH ;
Carroll, FE ;
Copeland, ML ;
Couprie, ME ;
Gabella, WE ;
Haglund, RF ;
Hooper, BA ;
Hutson, MS ;
Jansen, ED ;
Joos, KM ;
Kiehart, DP ;
Lindau, I ;
Miao, J ;
Pratisto, HS ;
Shen, JH ;
Tokutake, Y ;
van der Meer, AFG ;
Xie, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2003, 74 (07) :3207-3245
[9]   Generation of a continuum extending to the midinfrared by pumping ZBLAN fiber with an ultrafast 1550-nm source [J].
Hagen, CL ;
Walewski, JW ;
Sanders, ST .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) :91-93
[10]  
HARRINGTON JA, 2002, HDB OPTICS, V3