A Brief Overview on Parameter Optimization of Support Vector Machine

被引:0
作者
Cao, Qi [1 ]
Yu, Lei [2 ]
Cheng, Mingsheng [3 ]
机构
[1] Logist Engn Univ, Training Dept, Chongqing 401311, Peoples R China
[2] Chongqing Normal Univ, Coll Comp & Informat Sci, Chongqing 401331, Peoples R China
[3] Naval Univ Engn, Logist Coll, Tianjin 300450, Peoples R China
来源
2016 3RD INTERNATIONAL CONFERENCE ON SMART MATERIALS AND NANOTECHNOLOGY IN ENGINEERING (SMNE 2016) | 2016年
关键词
Support vector machine; Parameter selection; Optimization algorithm; Fitness function; CLASSIFICATION; ALGORITHM;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Support vector machine (SVM) has been successfully applied in classification and regression problems. But it is very sensitive to the selection of parameters. The fundamental principles of SVM are analyzed firstly. The main optimization methods and achievements for SVM parameters are introduced. And the popular fitness functions used for the parameter optimization of SVM are described. The objective of this paper is to provide readers a brief overview of the recent advances for parameter optimization of SVM and enable them to develop and implement new optimization strategies for SVM-related research at their disposal.
引用
收藏
页码:275 / 279
页数:5
相关论文
共 33 条
[1]  
Afif MH, 2012, 2012 22ND INTERNATIONAL CONFERENCE ON COMPUTER THEORY AND APPLICATIONS (ICCTA), P181, DOI 10.1109/ICCTA.2012.6523566
[2]  
[Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
[3]  
[Anonymous], 2010, TECHNICAL REPORT
[4]   A multi-objective artificial immune algorithm for parameter optimization in support vector machine [J].
Aydin, Ilhan ;
Karakose, Mehmet ;
Akin, Erhan .
APPLIED SOFT COMPUTING, 2011, 11 (01) :120-129
[5]   Differential Evolution Based Optimization of SVM Parameters for Meta Classifier Design [J].
Bhadra, Tapas ;
Bandyopadhyay, Sanghamitra ;
Maulik, Ujjwal .
2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, CONTROL AND INFORMATION TECHNOLOGY (C3IT-2012), 2012, 4 :50-57
[6]   Choosing multiple parameters for support vector machines [J].
Chapelle, O ;
Vapnik, V ;
Bousquet, O ;
Mukherjee, S .
MACHINE LEARNING, 2002, 46 (1-3) :131-159
[7]  
de Miranda PBC, 2012, IEEE SYS MAN CYBERN, P2909, DOI 10.1109/ICSMC.2012.6378235
[8]  
Fu Z., 2010, LNEE, V67, P793
[9]   Support vector machine classification and validation of cancer tissue samples using microarray expression data [J].
Furey, TS ;
Cristianini, N ;
Duffy, N ;
Bednarski, DW ;
Schummer, M ;
Haussler, D .
BIOINFORMATICS, 2000, 16 (10) :906-914
[10]  
HONG W.-C., 2013, Intelligent energy demand forecasting