Fuzzy Dodecahedron topology and E-infinity spacetime as a model for quantum physics

被引:39
作者
El Naschie, M. S.
机构
[1] Univ Alexandria, Dept Phys, Alexandria, Egypt
[2] Cairo Univ, Dept Astrophys, Cairo, Egypt
[3] Mansoura Univ, Dept Phys, Mansoura, Egypt
关键词
D O I
10.1016/j.chaos.2006.05.088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The geometry of classical platonic solids and their generalization to four-dimensional fuzzy polytopes are considered. Subsequently it is shown how the so obtained relationships and the associated symmetry groups are related to high energy particle physics. In particular the topology of a fuzzy Dodecahedron and four-dimensional polytopes are used to give information about the elementary particles content of the standard model of high energy physics. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1025 / 1033
页数:9
相关论文
共 20 条
[1]  
[Anonymous], 2005, SPACE TIME PHYS FRAC
[2]  
[Anonymous], GROUPS GEOMETRY
[3]  
COXETER HSM, 1973, REGULAR PROTOPES
[4]   Topics in the mathematical physics of E-infinity theory [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :656-663
[5]   The elementary particles content of quantum spacetime via Feynman graphs and higher dimensional polytops [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :1-4
[6]   Elementary prerequisites for E-infinity (Recommended background readings in nonlinear dynamics, geometry and topology [J].
El Naschie, M. S. .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :579-605
[7]   Intermediate prerequisites for E-infinity theory (Further recommended reading in nonlinear dynamics and mathematical physics) [J].
El Naschie, M. Saladin .
CHAOS SOLITONS & FRACTALS, 2006, 30 (03) :622-628
[8]  
El Naschie MS, 2004, INT J NONLIN SCI NUM, V5, P191
[9]  
El Naschie MS, 2006, INT J NONLIN SCI NUM, V7, P97
[10]   On two new fuzzy Kahler manifolds, Klein modular space and 't Hooft holographic principles [J].
El Naschie, MS .
CHAOS SOLITONS & FRACTALS, 2006, 29 (04) :876-881