The class number one problem for some non-abelian normal CM-fields

被引:23
作者
Louboutin, S
Okazaki, R
Olivier, M
机构
[1] DOSHISHA UNIV,DEPT MATH,TANABE,KYOTO 61003,JAPAN
[2] UNIV BORDEAUX 1,UMR 99 36,LAB A2X,F-33405 TALENCE,FRANCE
关键词
CM-field; dihedral field; relative class number;
D O I
10.1090/S0002-9947-97-01768-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a non-abelian normal CM-field of degree 4p, p any odd prime. Note that the Galois group of N is either the dicyclic group of order 4p, or the dihedral group of order 4p. We prove that the (relative) class number of a dicyclic CM-field of degree 4p is always greater then one. Then, Rie determine all the dihedral CM-fields of degree 12 with class number one: there are exactly nine such CM-fields.
引用
收藏
页码:3657 / 3678
页数:22
相关论文
共 26 条
[1]  
[Anonymous], 1993, COURSE COMPUTATIONAL
[2]  
[Anonymous], 1982, INTRO CYCLOTOMIC FIE
[3]  
BROWN E, 1974, J REINE ANGEW MATH, V266, P118
[4]   IMAGINARY BICYCLIC BIQUADRATIC FIELDS WITH CLASS-NUMBER 2 [J].
BUELL, DA ;
WILLIAMS, HC ;
WILLIAMS, KS .
MATHEMATICS OF COMPUTATION, 1977, 31 (140) :1034-1042
[5]  
Hasse H., 1952, KLASSENZAHL ABELSCHE
[6]   SOME ANALYTIC BOUNDS FOR ZETA FUNCTIONS AND CLASS NUMBERS [J].
HOFFSTEIN, J .
INVENTIONES MATHEMATICAE, 1979, 55 (01) :37-47
[7]   ON A RATIO BETWEEN RELATIVE CLASS-NUMBERS [J].
HORIE, K .
MATHEMATISCHE ZEITSCHRIFT, 1992, 211 (03) :505-521
[8]   POLYNOMIALS WITH DP AS GALOIS GROUP [J].
JENSEN, CU ;
YUI, N .
JOURNAL OF NUMBER THEORY, 1982, 15 (03) :347-375
[9]   DETERMINATION OF ALL NONNORMAL QUARTIC CM-FIELDS AND OF ALL NON-ABELIAN NORMAL OCTIC CM-FIELDS WITH CLASS NUMBER ONE [J].
LOUBOUTIN, S ;
OKAZAKI, R .
ACTA ARITHMETICA, 1994, 67 (01) :47-62
[10]   Determination of all quaternion octic CM-fields with class number 2 [J].
Louboutin, S .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 54 :227-238