ISOCHRONOUS FAMILIES OF LIMIT CYCLES

被引:0
作者
Cobiaga, Romina [1 ]
Reartes, Walter [1 ]
机构
[1] Univ Nacl Sur, Av Alem 1253, RA-8000 Bahia Blanca, Buenos Aires, Argentina
关键词
Limit cycle; isochronous orbit; delay differential equation; PERIOD; FOCI;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we present a method for determining if the frequency of a family of periodic orbits remains constant when a parameter changes. Two-dimensional systems of ordinary and delayed differential equations are considered. Several examples are given.
引用
收藏
页数:16
相关论文
共 18 条
[1]   POWER-SERIES EXPANSIONS FOR THE FREQUENCY AND PERIOD OF THE LIMIT-CYCLE OF THE VANDERPOL EQUATION [J].
ANDERSEN, CM ;
GEER, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (03) :678-693
[2]  
[Anonymous], 1993, INTRO FUNCTIONAL DIF, DOI 10.1007/978-1-4612-4342-7
[3]  
Bel A., 2014, ELECT J DIFFERENTIAL, V2014, P1
[4]   THE HOMOTOPY ANALYSIS METHOD IN BIFURCATION ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS [J].
Bel, Andrea ;
Reartes, Walter .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (08)
[5]  
Chavarriga J., 1999, Qual. Theor. Dyn. Syst, V1, P1, DOI DOI 10.1007/BF02969404
[6]   Isochronicity for several classes of Hamiltonian systems [J].
Cima, A ;
Manosas, F ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :373-413
[7]   LIMIT-CYCLES AND ROTATED VECTOR FIELDS [J].
DUFF, GFD .
ANNALS OF MATHEMATICS, 1953, 57 (01) :15-31
[8]  
FLOQUET G., 1883, Ann. Sci. Ecole Norm. Sup., V12, P47, DOI DOI 10.24033/ASENS.220
[9]   On the period of the limit cycles appearing in one-parameter bifurcations [J].
Gasull, A ;
Mañosa, V ;
Villadelprat, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) :255-288
[10]   Characterization of isochronous foci for planar analytic differential systems [J].
Giné, J ;
Grau, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 :985-998