On Two-faced Families of Non-commutative Random Variables

被引:31
作者
Charlesworth, Ian [1 ]
Nelson, Brent [1 ]
Skoufranis, Paul [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2015年 / 67卷 / 06期
基金
加拿大自然科学与工程研究理事会;
关键词
free probability; operator algebras; bi-free; NON-CROSSING PARTITIONS; MULTIPLICATIVE FUNCTIONS;
D O I
10.4153/CJM-2015-002-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We demonstrate that the notions of bi-free independence and combinatorial-hi-free independence of two-faced families are equivalent using a diagrammatic view of hi-non-crossing partitions. These diagrams produce an operator model on a Fock space suitable for representing any twofaced family of non-commutative random variables. Furthermore, using a Kreweras complement on bi-non-crossing partitions we establish the expected formulas for the multiplicative convolution of a bi-free pair of two-faced families.
引用
收藏
页码:1290 / 1325
页数:36
相关论文
共 5 条
[1]   Double-ended queues and joint moments of left-right canonical operators on full Fock space [J].
Mastnak, Mitja ;
Nica, Alexandru .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (02)
[2]   A ''Fourier transform'' for multiplicative functions on non-crossing partitions [J].
Nica, A ;
Speicher, R .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1997, 6 (02) :141-160
[3]   R-transforms of free joint distributions and non-crossing partitions [J].
Nica, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :271-296
[4]   MULTIPLICATIVE FUNCTIONS ON THE LATTICE OF NON-CROSSING PARTITIONS AND FREE CONVOLUTION [J].
SPEICHER, R .
MATHEMATISCHE ANNALEN, 1994, 298 (04) :611-628
[5]   Free Probability for Pairs of Faces I [J].
Voiculescu, Dan-Virgil .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 332 (03) :955-980