A Permutation Approach for Selecting the Penalty Parameter in Penalized Model Selection

被引:19
作者
Sabourin, Jeremy A. [1 ,2 ]
Valdar, William [1 ,4 ]
Nobel, Andrew B. [3 ,4 ,5 ]
机构
[1] Univ N Carolina, Dept Genet, Chapel Hill, NC USA
[2] NHGRI, Genometr Sect, Computat & Stat Genom Branch, NIH, Baltimore, MD USA
[3] Univ N Carolina, Dept Stat & Operat Res, Chapel Hill, NC 27514 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Dept Biostat, Chapel Hill, NC USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
LASSO; Penalized regression; Variable selection; REGRESSION SHRINKAGE; GENOME-WIDE; LASSO;
D O I
10.1111/biom.12359
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We describe a simple, computationally efficient, permutation-based procedure for selecting the penalty parameter in LASSO-penalized regression. The procedure, permutation selection, is intended for applications where variable selection is the primary focus, and can be applied in a variety of structural settings, including that of generalized linear models. We briefly discuss connections between permutation selection and existing theory for the LASSO. In addition, we present a simulation study and an analysis of real biomedical data sets in which permutation selection is compared with selection based on the following: cross-validation (CV), the Bayesian information criterion (BIC), scaled sparse linear regression, and a selection method based on recently developed testing procedures for the LASSO.
引用
收藏
页码:1185 / 1194
页数:10
相关论文
共 22 条
  • [1] SNP Selection in Genome-Wide and Candidate Gene Studies via Penalized Logistic Regression
    Ayers, Kristin L.
    Cordell, Heather J.
    [J]. GENETIC EPIDEMIOLOGY, 2010, 34 (08) : 879 - 891
  • [2] Square-root lasso: pivotal recovery of sparse signals via conic programming
    Belloni, A.
    Chernozhukov, V.
    Wang, L.
    [J]. BIOMETRIKA, 2011, 98 (04) : 791 - 806
  • [3] Buhlmann P., 2011, SPRINGER SERIES STAT
  • [4] Dalalyan A.S., 2014, ARXIV E PRINTS
  • [5] Variable selection via nonconcave penalized likelihood and its oracle properties
    Fan, JQ
    Li, RZ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) : 1348 - 1360
  • [6] Feng Y., 2013, ARXIV E PRINTS
  • [7] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [8] Grazier G'Sell M., 2013, ARXIV E PRINTS
  • [9] How Correlations Influence Lasso Prediction
    Hebiri, Mohamed
    Lederer, Johannes
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (03) : 1846 - 1854
  • [10] Comprehensive molecular portraits of human breast tumours
    Koboldt, Daniel C.
    Fulton, Robert S.
    McLellan, Michael D.
    Schmidt, Heather
    Kalicki-Veizer, Joelle
    McMichael, Joshua F.
    Fulton, Lucinda L.
    Dooling, David J.
    Ding, Li
    Mardis, Elaine R.
    Wilson, Richard K.
    Ally, Adrian
    Balasundaram, Miruna
    Butterfield, Yaron S. N.
    Carlsen, Rebecca
    Carter, Candace
    Chu, Andy
    Chuah, Eric
    Chun, Hye-Jung E.
    Coope, Robin J. N.
    Dhalla, Noreen
    Guin, Ranabir
    Hirst, Carrie
    Hirst, Martin
    Holt, Robert A.
    Lee, Darlene
    Li, Haiyan I.
    Mayo, Michael
    Moore, Richard A.
    Mungall, Andrew J.
    Pleasance, Erin
    Robertson, A. Gordon
    Schein, Jacqueline E.
    Shafiei, Arash
    Sipahimalani, Payal
    Slobodan, Jared R.
    Stoll, Dominik
    Tam, Angela
    Thiessen, Nina
    Varhol, Richard J.
    Wye, Natasja
    Zeng, Thomas
    Zhao, Yongjun
    Birol, Inanc
    Jones, Steven J. M.
    Marra, Marco A.
    Cherniack, Andrew D.
    Saksena, Gordon
    Onofrio, Robert C.
    Pho, Nam H.
    [J]. NATURE, 2012, 490 (7418) : 61 - 70