Harnack inequality and pinching estimates for anisotropic curvature flow of hypersurfaces

被引:2
作者
Kang, Hyunsuk [1 ]
Lee, Ki-Ahm [2 ,3 ]
机构
[1] Gwangju Inst Sci & Technol, GIST Coll, Div Liberal Arts & Sci, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Korea Inst Adv Study, Seoul 130722, South Korea
关键词
Curvature flow; Harnack inequality; Pinching estimate; RICCI FLOW; CONVEX HYPERSURFACES; SPACE;
D O I
10.1016/j.jmaa.2018.03.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a differential Harnack inequality for anisotropic curvature flow of convex hypersurfaces in Euclidean space with its speed given by a curvature function of homogeneity degree one in a certain class, and restrictions depending only on the initial data and the anisotropic factor which reflects the influence of the ambient space. Moreover, the pinching estimate for such flows is derived from the maximum principle for tensors. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:32 / 57
页数:26
相关论文
共 30 条
[1]   HARNACK INEQUALITIES FOR EVOLVING HYPERSURFACES [J].
ANDREWS, B .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (02) :179-197
[3]  
Andrews B, 2001, INDIANA U MATH J, V50, P783
[4]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[5]  
Andrews B, 2016, ANN SCUOLA NORM-SCI, V15, P543
[6]   Contracting convex hypersurfaces by curvature [J].
Andrews, Ben ;
McCoy, James ;
Zheng, Yu .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) :611-665
[7]  
Brendle S, 2009, J DIFFER GEOM, V82, P207
[8]  
Bryan P., ARXIV151203374
[9]  
Bryan P., ARXIV170307493
[10]   THE CANONICAL EXPANDING SOLITON AND HARNACK INEQUALITIES FOR RICCI FLOW [J].
Cabezas-Rivas, Esther ;
Topping, Peter M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (06) :3001-3021