Nonsingular Black Holes in 4D Einstein-Gauss-Bonnet Gravity

被引:25
作者
Kumar, Arun [1 ,2 ]
Baboolal, Dharmanand [3 ]
Ghosh, Sushant G. [1 ,3 ]
机构
[1] Jamia Millia Islamia, Ctr Theoret Phys, New Delhi 110025, India
[2] Univ Zululand, Dept Math Sci, Private Bag X1001, ZA-3886 Kwa Dlangezwa, South Africa
[3] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Astrophys & Cosmol Res Unit, Private Bag X54001, ZA-4000 Durban, South Africa
关键词
black holes; thermodynamics; stability; SYMMETRICAL-SOLUTIONS; THERMODYNAMICS; TENSOR; SPACE;
D O I
10.3390/universe8040244
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recently, several methods have been proposed to regularize a D -> 4 limit of Einstein-Gauss-Bonnet (EGB), leading to nontrivial gravitational dynamics in 4D. We present an exact nonsingular black hole solution in the 4D EGB gravity coupled to non-linear electrodynamics and analyze their thermodynamic properties to calculate precise expressions for the black hole mass, temperature, and entropy. Because of the magnetic charge, the thermodynamic quantities are corrected, and the Hawking-Page phase transition is achievable with diverges of the heat capacity at a larger critical radius r = r(+)(C) in comparison to the 5D counterpart where the temperature is maximum. Thus, we have a black hole with Cauchy and event horizons, and its evaporation leads to a thermodynamically stable extremal black hole remnant with vanishing temperature, and its size is larger than the 5D counterpart. The entropy does not satisfy the usual exact horizon Bekenstein-Hawking area law of general relativity with a logarithmic area correction term.
引用
收藏
页数:16
相关论文
共 97 条
[1]   Shadow of rotating regular black holes [J].
Abdujabbarov, Ahmadjon ;
Amir, Muhammed ;
Ahmedov, Bobomurat ;
Ghosh, Sushant G. .
PHYSICAL REVIEW D, 2016, 93 (10)
[2]   Direct search for dirac magnetic monopoles in p(p)over-bar collisions at √s=1.96 TeV [J].
Abulencia, A. ;
Acosta, D. ;
Adelman, J. ;
Affolder, T. ;
Akimoto, T. ;
Albrow, M. G. ;
Ambrose, D. ;
Amerio, S. ;
Amidei, D. ;
Anastassov, A. ;
Anikeev, K. ;
Annovi, A. ;
Antos, J. ;
Aoki, M. ;
Apollinari, G. ;
Arguin, J. -F. ;
Arisawa, T. ;
Artikov, A. ;
Ashmanskas, W. ;
Attal, A. ;
Azfar, F. ;
Azzi-Bacchetta, P. ;
Azzurri, P. ;
Bacchetta, N. ;
Bachacou, H. ;
Badgett, W. ;
Barbaro-Galtieri, A. ;
Barnes, V. E. ;
Barnett, B. A. ;
Baroiant, S. ;
Bartsch, V. ;
Bauer, G. ;
Bedeschi, F. ;
Behari, S. ;
Belforte, S. ;
Bellettini, G. ;
Bellinger, J. ;
Belloni, A. ;
Ben-Haim, E. ;
Benjamin, D. ;
Beretvas, A. ;
Beringer, J. ;
Berry, T. ;
Bhatti, A. ;
Binkley, M. ;
Bisello, D. ;
Bishai, M. ;
Blair, R. E. ;
Blocker, C. ;
Bloom, K. .
PHYSICAL REVIEW LETTERS, 2006, 96 (20)
[3]   A note on the novel 4D Einstein-Gauss-Bonnet gravity [J].
Ai, Wen-Yuan .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2020, 72 (09)
[4]  
Alexeyev SO, 1997, PHYS REV D, V55, P2110, DOI 10.1103/PhysRevD.55.2110
[5]   Collision of two general particles around a rotating regular Hayward's black holes [J].
Amir, Muhammed ;
Ahmed, Fazlay ;
Ghosh, Sushant G. .
EUROPEAN PHYSICAL JOURNAL C, 2016, 76 (10)
[6]   Rotating Hayward's regular black hole as particle accelerator [J].
Amir, Muhammed ;
Ghosh, Sushant G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[7]  
Ansoldi S., 2008, C BLACK HOL NAK SING
[8]   Black-hole solutions with scalar hair in Einstein-scalar-Gauss-Bonnet theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW D, 2018, 97 (08)
[9]   Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories [J].
Antoniou, G. ;
Bakopoulos, A. ;
Kanti, P. .
PHYSICAL REVIEW LETTERS, 2018, 120 (13)
[10]   A consistent theory of D → 4 Einstein-Gauss-Bonnet gravity [J].
Aoki, Katsuki ;
Gorji, Mohammad Ali ;
Mukohyama, Shinji .
PHYSICS LETTERS B, 2020, 810