The Isomorphism Problem for Cyclic Algebras and an Application

被引:0
作者
Hanke, Timo [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Mexico City 04510, DF, Mexico
来源
ISSAC 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION | 2007年
关键词
Abelian crossed product; bicyclic crossed product; cyclic algebra; extension of automorphism; finite-dimensional central-simple algebra; isomorphism problem; noncrossed product; norm equation;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The isomorphism problem means to decide if two given finite-dimensional simple algebras with center K are K-isomorphic and, if so, to construct a K-isomorphism between them. Applications lie in computational aspects of representation theory, algebraic geometry and Brauer group theory. The paper presents an algorithm for cyclic algebras that reduces the isomorphism problem to field theory and thus provides a solution if certain field theoretic problems including norm equations can be solved (this is satisfied over number fields). As an application, we can compute all automorphisms of any given cyclic algebra over a. number field. A detailed example is provided which leads to the construction of an explicit noncrossed product division algebra.
引用
收藏
页码:181 / 186
页数:6
相关论文
共 13 条
  • [1] GENERIC ABELIAN CROSSED PRODUCTS AND P-ALGEBRAS
    AMITSUR, SA
    SALTMAN, D
    [J]. JOURNAL OF ALGEBRA, 1978, 51 (01) : 76 - 87
  • [2] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [3] KANT V4
    Daberkow, M
    Fieker, C
    Kluners, J
    Pohst, M
    Roegner, K
    Schornig, M
    Wildanger, K
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 267 - 283
  • [4] A Lie algebra method for rational parametrization of Severi-Brauer surfaces
    de Graaf, Willem A.
    Harrison, Michael
    Pilnikova, Jana
    Schicho, Josef
    [J]. JOURNAL OF ALGEBRA, 2006, 303 (02) : 514 - 529
  • [5] Eberly W., 1991, Computational Complexity, V1, P183, DOI 10.1007/BF01272520
  • [7] A twisted laurent series ring that is a noncrossed product
    Hanke, Timo
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2005, 150 (1) : 199 - 203
  • [8] JACOBSON N, 1996, FINITE DIMENSIONAL D
  • [9] KURSOV VV, 1992, AM MATH SOC TRANSL, V154
  • [10] Pierce R.S., 1982, Associative Algebras, GTM 88, V88