Basin Hopping Graph: a computational framework to characterize RNA folding landscapes

被引:30
|
作者
Kucharik, Marcel [1 ]
Hofacker, Ivo L. [1 ,2 ,3 ]
Stadler, Peter F. [1 ,4 ,5 ,6 ,7 ,8 ,9 ,10 ]
Qin, Jing [3 ,11 ]
机构
[1] Univ Vienna, Fac Comp Sci, Inst Theoret Chem, A-1090 Vienna, Austria
[2] Univ Vienna, Fac Comp Sci, Res Grp BCB, A-1090 Vienna, Austria
[3] Univ Copenhagen, Ctr Noncoding RNA Technol & Hlth, DK-1870 Frederiksberg C, Denmark
[4] Univ Leipzig, Dept Comp Sci, D-04107 Leipzig, Germany
[5] Univ Leipzig, IZBI, D-04107 Leipzig, Germany
[6] Univ Leipzig, IDiv, D-04107 Leipzig, Germany
[7] Univ Leipzig, LIFE, D-04107 Leipzig, Germany
[8] Max Planck Inst Math Sci, Leipzig, Germany
[9] Fraunhofer Inst IZI, Leipzig, Germany
[10] Santa Fe Inst, Santa Fe, NM 87501 USA
[11] Univ Southern Denmark, Dept Math & Comp Sci, Odense, Denmark
基金
奥地利科学基金会;
关键词
DYNAMIC-PROGRAMMING ALGORITHM; SECONDARY STRUCTURES; STRUCTURE PREDICTION; WEB SERVER; SEQUENCE; STATES; PATHS;
D O I
10.1093/bioinformatics/btu156
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: RNA folding is a complicated kinetic process. The minimum free energy structure provides only a static view of the most stable conformational state of the system. It is insufficient to give detailed insights into the dynamic behavior of RNAs. A sufficiently sophisticated analysis of the folding free energy landscape, however, can provide the relevant information. Results: We introduce the Basin Hopping Graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect basins when the direct transitions between them are 'energetically favorable'. Edge weights endcode the corresponding saddle heights and thus measure the difficulties of these favorable transitions. BHGs can be approximated accurately and efficiently for RNA molecules well beyond the length range accessible to enumerative algorithms.
引用
收藏
页码:2009 / 2017
页数:9
相关论文
共 50 条
  • [1] PHYS 96-Protein folding using basin-hopping and energy landscapes
    Prentiss, Michael C.
    Wales, David J.
    Wolynes, Peter G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [2] RNA FOLDING AND COMBINATORY LANDSCAPES
    FONTANA, W
    STADLER, PF
    BORNBERGBAUER, EG
    GRIESMACHER, T
    HOFACKER, IL
    TACKER, M
    TARAZONA, P
    WEINBERGER, ED
    SCHUSTER, P
    PHYSICAL REVIEW E, 1993, 47 (03): : 2083 - 2099
  • [3] Pseudoknots in RNA folding landscapes
    Kucharik, Marcel
    Hofacker, Ivo L.
    Stadler, Peter F.
    Qin, Jing
    BIOINFORMATICS, 2016, 32 (02) : 187 - 194
  • [4] RNA folding energy landscapes
    Chen, SJ
    Dill, KA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (02) : 646 - 651
  • [5] Force-dependent hopping rates of RNA hairpins can be estimated from accurate measurement of the folding landscapes
    Hyeon, Changbong
    Morrison, Greg
    Thirumalai, D.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (28) : 9604 - 9609
  • [6] RNA Folding Landscapes in the Presence of Putrescine and Magnesium
    Trachman, Robert J.
    Draper, David E.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 411A - 411A
  • [7] BarMap: RNA folding on dynamic energy landscapes
    Hofacker, Ivo L.
    Flamm, Christoph
    Heine, Christian
    Wolfinger, Michael T.
    Scheuermann, Gerik
    Stadler, Peter F.
    RNA, 2010, 16 (07) : 1308 - 1316
  • [8] A Graph Grammar for Modelling RNA Folding
    Mamuye, Adane Letta
    Merelli, Emanuela
    Tesei, Luca
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2016, (231): : 31 - 41
  • [9] Basin hopping simulations for all-atom protein folding
    Verma, A
    Schug, A
    Lee, KH
    Wenzel, W
    JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (04):
  • [10] Identifying stochastic basin hopping by partitioning with graph modularity
    Santitissadeekorn, N.
    Bollt, E. M.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 231 (02) : 95 - 107