THE SHIFTED-INVERSE ITERATION BASED ON THE MULTIGRID DISCRETIZATIONS FOR EIGENVALUE PROBLEMS

被引:27
作者
Yang, Yidu [1 ]
Bi, Hai [1 ]
Han, Jiayu [1 ]
Yu, Yuanyuan [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
美国国家科学基金会;
关键词
eigenvalue problem; finite element; multigrid discretizations; inverse iteration with fixed shift; Rayleigh quotient iteration; convergence; FINITE-ELEMENT APPROXIMATION; COMPUTATION; COMPLEXITY; EQUATIONS;
D O I
10.1137/140992011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The shifted-inverse iteration based on the multigrid discretizations developed in recent years is an efficient computation method for eigenvalue problems. In this paper, for general self-adjoint eigenvalue problems, including the Maxwell eigenvalue problem and integral operator eigenvalue problem, we establish the inverse iteration with fixed shift based on multigrid discretizations. We study in depth the inverse iteration with fixed shift and Rayleigh quotient iteration based on multigrid discretizations and first prove under general conditions the error estimates and convergence for the iterative solution approximating the exact solution of the original eigenvalue problems, especially in an adaptive fashion. Finally, we present some numerical examples performed to validate our theoretical results.
引用
收藏
页码:A2583 / A2606
页数:24
相关论文
共 51 条
[1]  
Ainsworth M, 2011, POSTERIOR ERROR ESTI
[2]  
[Anonymous], 1997, NUMERICAL LINEAR ALG
[3]  
[Anonymous], 1991, Handbk Numer Anal
[4]  
[Anonymous], KE XUE TONG BAO
[5]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[6]   FINITE ELEMENT-GALERKIN APPROXIMATION OF THE EIGENVALUES AND EIGENVECTORS OF SELFADJOINT PROBLEMS [J].
BABUSKA, I ;
OSBORN, JE .
MATHEMATICS OF COMPUTATION, 1989, 52 (186) :275-297
[7]   LOCAL AND PARALLEL FINITE ELEMENT DISCRETIZATIONS FOR EIGENVALUE PROBLEMS [J].
Bi, Hai ;
Yang, Yidu ;
Li, Hao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2575-A2597
[8]   Computational models of electromagnetic resonators: Analysis of edge element approximation [J].
Boffi, D ;
Fernandes, P ;
Gastaldi, L ;
Perugia, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1999, 36 (04) :1264-1290
[9]  
Boffi D, 2010, ACTA NUMER, V19, P1, DOI 10.1017/S0962492910000012
[10]  
Bramble James H., 1993, Pitman Research Notes in Mathematics Series, V294