Bifurcation of limit cycles near polycycles with n vertices

被引:19
作者
Han, MA [1 ]
Wu, YH [1 ]
Bi, P [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2004.02.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the study of Hilbert 16th problem the most difficult part is to find the maximal number of limit cycles appearing near a polycycle by perturbations. In this paper we study the bifurcation of limit cycles near a polycycle with n hyperbolic saddle points. We obtain a sufficient condition for the polycycle to generate at least n limit cycles. We also establish a necessary and sufficient condition for the existence of a separatrix connecting any two saddle points. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:383 / 394
页数:12
相关论文
共 23 条
[1]  
Andronov A.A., 1973, Theory of bifurcations of dynamic systems on a plane
[2]   Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms [J].
Cao, HJ ;
Liu, ZR ;
Jing, ZJ .
CHAOS SOLITONS & FRACTALS, 2000, 11 (14) :2293-2304
[3]  
CHERKAS LA, 1968, DIFF URAVN, V4, P1012
[4]  
Chow S-N., 2012, METHODS BIFURCATION
[5]   ELEMENTARY GRAPHICS OF CYCLICITY-1 AND CYCLICITY-2 [J].
DUMORTIER, F ;
ROUSSARIE, R ;
ROUSSEAU, C .
NONLINEARITY, 1994, 7 (03) :1001-1043
[6]  
ELMORSALANI M, 1994, NONLINEARITY, V7, P1593, DOI 10.1088/0951-7715/7/6/004
[7]  
Guckenheimer J., 1983, NONLINEAR OSCILLATIO, V42
[8]  
HAN M, 1992, MACTA MATH SINICA, V3, P523
[9]  
HAN M, 1992, MACTA MATH SINICA, V3, P673
[10]  
HAN M, 1992, MACTA MATH SINICA, V3, P407