Travelling Wave Solutions of the General Regularized Long Wave Equation

被引:10
作者
Zheng, Hang [1 ,2 ]
Xia, Yonghui [1 ]
Bai, Yuzhen [3 ]
Wu, Luoyi [2 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Wuyi Univ, Dept Math & Comp, Wuyishan 354300, Fujian, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
GRLW equation; Exact solutions; Bifurcation; Dynamical system; FINITE-ELEMENT-METHOD; QUADRATIC B-SPLINE; NUMERICAL-SOLUTION; COLLOCATION METHOD; MRLW; SCHEME; MODEL;
D O I
10.1007/s12346-020-00442-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the bifurcation and exact travelling wave solutions of the general regularized long wave (GRLW) equation. Based on the bifurcation theory of dynamical system, the various exact solutions are obtained. We consider the cases: p=2n+1 and p=2n respectively. It is shown that GRLW equation has extra kink and anti-kink wave solutions when p=2n+1, while it's not for p=2n.
引用
收藏
页数:21
相关论文
共 41 条
[1]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[2]   Stable and unstable solitary-wave solutions of the generalized regularized long-wave equation [J].
Bona, JL ;
McKinney, WR ;
Restrepo, JM .
JOURNAL OF NONLINEAR SCIENCE, 2000, 10 (06) :603-638
[3]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA, V67, P191, DOI [DOI 10.1007/978-3-642-65138-0, 10.1007/978-3-642-65138-0_6, DOI 10.1007/978-3-642-65138-0_6]
[4]   Periodic soliton interactions for higher-order nonlinear Schrodinger equation in optical fibers [J].
Chen, Jigen ;
Luan, Zitong ;
Zhou, Qin ;
Alzahrani, Abdullah Kamis ;
Biswas, Anjan ;
Liu, Wenjun .
NONLINEAR DYNAMICS, 2020, 100 (03) :2817-2821
[5]   Application of cubic B-splines for numerical solution of the RLW equation [J].
Dag, I ;
Saka, B ;
Irk, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) :373-389
[6]   Least-squares quadratic B-spline finite element method for the regularised long wave equation [J].
Dag, I .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 182 (1-2) :205-215
[7]   The existence of solitary wave solutions of delayed Camassa-Holm equation via a geometric approach [J].
Du, Zengji ;
Li, Ji ;
Li, Xiaowan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (04) :988-1007
[8]   The first integral method for Wu-Zhang system with conformable time-fractional derivative [J].
Eslami, Mostafa ;
Rezazadeh, Hadi .
CALCOLO, 2016, 53 (03) :475-485
[9]   Exact traveling wave solutions to the fractional coupled nonlinear Schrodinger equations [J].
Eslami, Mostafa .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 285 :141-148
[10]   A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue [J].
Feng, Bao-Feng ;
Maruno, Ken-ichi ;
Ohta, Yasuhiro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (05)