Sub-km scale numerical weather prediction model simulations of radiation fog

被引:37
作者
Smith, Daniel K. E. [1 ]
Renfrew, Ian A. [1 ]
Dorling, Stephen R. [1 ]
Price, Jeremy D. [2 ]
Boutle, Ian A. [2 ]
机构
[1] Univ East Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[2] Met Off, Exeter, Devon, England
关键词
boundary‐ layer; NWP; radiation fog; soil thermal conductivity; BOUNDARY-LAYER; MATERHORN-FOG; LIFE-CYCLE; IMPACT; VALLEY; JULES; ATMOSPHERE; SCHEME; CONFIGURATION; SENSITIVITY;
D O I
10.1002/qj.3943
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The numerical weather prediction (NWP) of fog remains a challenge, with accurate forecasts relying on the representation of many interacting physical processes. The recent Local And Non-local Fog EXperiment (LANFEX) has generated a detailed observational dataset, creating a unique opportunity to assess the NWP of fog events. We evaluate the performance of operational and research configurations of the Met Office Unified Model (MetUM) with three horizontal grid lengths, 1.5 km and 333 and 100 m, in simulating four LANFEX case studies. In general, the subkilometre (sub-km) scale versions of MetUM are in better agreement with the observations; however, there are a number of systematic model deficiencies. MetUM produces valleys that are too warm and hills that are too cold, leading to valleys that do not have enough fog and hills that have too much. A large sensitivity to soil temperature was identified from a set of parametrisation sensitivity experiments. In all the case studies, the model erroneously transfers heat too readily through the soil to the surface, preventing fog formation. Sensitivity tests show that the specification of the soil thermal conductivity parametrisation can lead to up to a 5-hr change in fog onset time. Overall, the sub-km models demonstrate promise, but they have a high sensitivity to surface properties.
引用
收藏
页码:746 / 763
页数:18
相关论文
共 73 条
[1]  
[Anonymous], 2009, 528 UK MET OFF
[2]  
Arakawa A., 1977, Methods in Computational Physics: Advances in Research and Applications: Volume 17: General Circulation Models of the Atmosphere, V17, P173, DOI DOI 10.1016/B978-0-12-460817-7.50009-4
[3]   Winter fog is decreasing in the fruit growing region of the Central Valley of California [J].
Baldocchi, Dennis ;
Waller, Eric .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (09) :3251-3256
[4]  
BERGOT T, 1994, MON WEATHER REV, V122, P1218, DOI 10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO
[5]  
2
[6]   Intercomparison of single-column numerical models for the prediction of radiation fog [J].
Bergot, Thierry ;
Terradellas, Enric ;
Cuxart, Joan ;
Mira, Antoni ;
Liechti, Olivier ;
Mueller, Mathias ;
Nielsen, Niels Woetmann .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2007, 46 (04) :504-521
[7]   The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes [J].
Best, M. J. ;
Pryor, M. ;
Clark, D. B. ;
Rooney, G. G. ;
Essery, R. L. H. ;
Menard, C. B. ;
Edwards, J. M. ;
Hendry, M. A. ;
Porson, A. ;
Gedney, N. ;
Mercado, L. M. ;
Sitch, S. ;
Blyth, E. ;
Boucher, O. ;
Cox, P. M. ;
Grimmond, C. S. B. ;
Harding, R. J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) :677-699
[8]   The London Model: forecasting fog at 333 m resolution [J].
Boutle, I. A. ;
Finnenkoetter, A. ;
Lock, A. P. ;
Wells, H. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2016, 142 (694) :360-371
[9]   Seamless Stratocumulus Simulation across the Turbulent Gray Zone [J].
Boutle, I. A. ;
Eyre, J. E. J. ;
Lock, A. P. .
MONTHLY WEATHER REVIEW, 2014, 142 (04) :1655-1668
[10]   Spatial variability of liquid cloud and rain: observations and microphysical effects [J].
Boutle, I. A. ;
Abel, S. J. ;
Hill, P. G. ;
Morcrette, C. J. .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2014, 140 (679) :583-594