Improving Implicit Stance Classification in Tweets Using Word and Sentence Embeddings

被引:2
|
作者
Schaefer, Robin [1 ]
Stede, Manfred [1 ]
机构
[1] Univ Potsdam, Appl Computat Linguist, Potsdam, Germany
来源
ADVANCES IN ARTIFICIAL INTELLIGENCE, KI 2019 | 2019年 / 11793卷
关键词
Argumentation mining; Social media; Stance classification;
D O I
10.1007/978-3-030-30179-8_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Argumentation Mining aims at finding components of arguments, as well as relations between them, in text. One of the largely unsolved problems is implicitness, where the text invites the reader to infer a missing component, such as the claim or a supporting statement. In the work of Wojatzki and Zesch (2016), an interesting implicitness problem is addressed on a Twitter data set. They showed that implicit stances toward a claim can be found with some success using just token and character n-grams. Using the same dataset, we show that results for this task can be improved using word and sentence embeddings, but that not all embedding variants perform alike. Specifically, we compare fastText, GloVe, and Universal Sentence Encoder (USE); and we find that, to our knowledge, USE yields state-of-the-art results for this task.
引用
收藏
页码:299 / 307
页数:9
相关论文
共 50 条
  • [1] Debate Stance Classification Using Word Embeddings
    Konjengbam, Anand
    Ghosh, Subrata
    Kumar, Nagendra
    Singh, Manish
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY (DAWAK 2018), 2018, 11031 : 382 - 395
  • [2] Enhanced classification of crisis related tweets using deep learning models and word embeddings
    Ramachandran D.
    Parvathi R.
    Ramachandran, Dharini (dharini.r2014@vit.ac.in), 1600, Inderscience Publishers (16): : 158 - 186
  • [3] A novel tweets clustering method using word embeddings
    Fraj, Maha
    Ben Hajkacem, Mohamed Aymen
    Essoussi, Nadia
    2018 IEEE/ACS 15TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2018,
  • [4] On Character vs Word Embeddings as Input for English Sentence Classification
    Hammerton, James
    Vintro, Merce
    Kapetanakis, Stelios
    Sama, Michele
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2019, 868 : 550 - 566
  • [5] Stance Classification of Tweets Using Skip Char Ngrams
    HaCohen-kerner, Yaakov
    Ido, Ziv
    Ya'akobov, Ronen
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT III, 2017, 10536 : 266 - 278
  • [6] Single document summarization using word and sentence embeddings
    Ayana
    PROCEEDINGS OF THE 2015 JOINT INTERNATIONAL MECHANICAL, ELECTRONIC AND INFORMATION TECHNOLOGY CONFERENCE (JIMET 2015), 2015, 10 : 523 - 526
  • [7] Detecting Paraphrases for Portuguese using Word and Sentence Embeddings
    Souza, Marlo
    Sanches, Leandro M. P.
    LINGUAMATICA, 2018, 10 (02): : 31 - 44
  • [8] A Study on the Relevance of Generic Word Embeddings for Sentence Classification in Hepatic Surgery
    Oukelmoun, Achir
    Semmar, Nasredine
    de Chalendar, Gael
    Habran, Enguerrand
    Vibert, Eric
    Goblet, Emma
    Oukelmoun, Mariame
    Allard, Marc-Antoine
    2023 20TH ACS/IEEE INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, AICCSA, 2023,
  • [9] Improving WordNet using Word Embeddings
    Chiru, Costin-Gabriel
    Truica, Ciprian-Octavian
    Apostol, Elena-Simona
    Ionescu, Alexandru
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 121 - 128
  • [10] Text Classification Using Word Embeddings
    Helaskar, Mukund N.
    Sonawane, Sheetal S.
    2019 5TH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, CONTROL AND AUTOMATION (ICCUBEA), 2019,