Asymptotic constancy and periodicity for a single neuron model with delay

被引:2
作者
Vas, Gabriella [1 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
关键词
Delayed cellular network; Periodic solution; Asymptotic constancy; Positive feedback; FUNCTIONAL-DIFFERENTIAL EQUATIONS; SYSTEMS;
D O I
10.1016/j.na.2009.01.078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the single neuron model equation (x) over dot(t) = -dx(t) + af (x(t)) + bf (x(t-1)) + 1, t > 0, where d > 0, b > 0 and f(x) = 1/2 (|x + 1| - |x - 1|). We examine the asymptotic behaviour of the solutions and confirm that although most of them are convergent, there exists a periodic solution if d < a + b - |I|. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2268 / 2277
页数:10
相关论文
共 13 条
  • [1] ANDERHEIDEN U, 1981, LECT APPL MATH, V19, P355
  • [2] [Anonymous], 2001, Introduction to neural dynamics and signal transmission delay, volume 6 of de Gruyter Series in Nonlinear Analysis and Applications
  • [3] Diekmann O., 1995, Applied Mathematical Sciences
  • [4] Stability analysis of a single neuron model with delay
    Gyori, I
    Hartung, F
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) : 73 - 92
  • [5] LIAPUNOV-RAZUMIKHIN FUNCTIONS AND AN INVARIANCE-PRINCIPLE FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS
    HADDOCK, JR
    TERJEKI, J
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 48 (01) : 95 - 122
  • [6] HALE J, 1977, THEORY FUNCTIONAL DI
  • [7] KRISZTIN T, 1981, ACTA SCI MATH, V43, P45
  • [8] KRISZTIN T, 2001, TOPICS FUNCTIONAL DI, V29, P267
  • [9] Krisztin T., 1999, SMOOTHNESS INVARIANT
  • [10] Krisztin T., 2001, J. Dyn. Differ. Equations, V13, P1, DOI DOI 10.1023/A:1009091930589