Salt-responsive transcriptome analysis of triticale reveals candidate genes involved in the key metabolic pathway in response to salt stress

被引:17
|
作者
Deng, Chaohong [1 ,2 ]
Zhang, Zhibin [3 ]
Yan, Guorong [2 ,4 ]
Wang, Fan [2 ,4 ]
Zhao, Lianjia [2 ,4 ]
Liu, Ning [2 ,4 ]
Abudurezike, Abudukeyoumu [2 ,4 ]
Li, Yushan [2 ]
Wang, Wei [2 ,4 ]
Shi, Shubing [1 ]
机构
[1] Xinjiang Agr Univ, Coll Agron, Urumqi 830091, Peoples R China
[2] Xinjiang Acad Agr Sci, Res Inst Crop Germplasm Resources, Urumqi 830091, Peoples R China
[3] Chinese Acad Agr Sci, Inst Cotton Res, State Key Lab Cotton Biol, Anyang 455000, Peoples R China
[4] Minist Agr & Rural Affairs, Wulumuqi Subctr New Plant Variety Tests, Urumqi 830091, Peoples R China
关键词
RNA-SEQ ANALYSIS; TOLERANCE; IDENTIFICATION; EXPRESSION; SALINITY; DROUGHT; ANNOTATION; ROOTS; TOOL; MECHANISMS;
D O I
10.1038/s41598-020-77686-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triticale is tolerant of many environmental stresses, especially highly resistant to salt stress. However, the molecular regulatory mechanism of triticale seedlings under salt stress conditions is still unclear so far. In this study, a salt-responsive transcriptome analysis was conducted to identify candidate genes or transcription factors related to salt tolerance in triticale. The root of salt-tolerant triticale cultivars TW004 with salt-treated and non-salt stress at different time points were sampled and subjected to de novo transcriptome sequencing. Total 877,858 uniquely assembled transcripts were identified and most contigs were annotated in public databases including nr, GO, KEGG, eggNOG, Swiss-Prot and Pfam. 59,280, 49,345, and 85,922 differentially expressed uniquely assembled transcripts between salt treated and control triticale root samples at three different time points (C12_vs_T12, C24_vs_T24, and C48_vs_T48) were identified, respectively. Expression profile and functional enrichment analysis of DEGs found that some DEGs were significantly enriched in metabolic pathways related to salt tolerance, such as reduction-oxidation pathways, starch and sucrose metabolism. In addition, several transcription factor families that may be associated with salt tolerance were also identified, including AP2/ERF, NAC, bHLH, WRKY and MYB. Furthermore, 14 DEGs were selected to validate the transcriptome profiles via quantitative RT-PCR. In conclusion, these results provide a foundation for further researches on the regulatory mechanism of triticale seedlings adaptation to salt stress in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] The Soybean Gene J Contributes to Salt Stress Tolerance by Up-Regulating Salt-Responsive Genes
    Cheng, Qun
    Gan, Zhuoran
    Wang, Yanping
    Lu, Sijia
    Hou, Zhihong
    Li, Haiyang
    Xiang, Hongtao
    Liu, Baohui
    Kong, Fanjiang
    Dong, Lidong
    FRONTIERS IN PLANT SCIENCE, 2020, 11
  • [22] Comparative Transcriptome Analysis of Salt-Stress-Responsive Genes in Rice Roots
    Song, Rui
    Huang, Yan
    Ji, Xin
    Wei, Yunfei
    Liu, Qiuyuan
    Li, Shumei
    Liu, Juan
    Dong, Pengfei
    PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, 2023, 92 (01) : 237 - 250
  • [23] Transcriptome analysis reveals dynamic changes in the salt stress response in Salix
    Jie Zhou
    Jing Huang
    Xueyao Tian
    Jiwei Zheng
    Xudong He
    JournalofForestryResearch, 2020, 31 (05) : 1851 - 1862
  • [24] Transcriptome analysis reveals dynamic changes in the salt stress response inSalix
    Zhou, Jie
    Huang, Jing
    Tian, Xueyao
    Zheng, Jiwei
    He, Xudong
    JOURNAL OF FORESTRY RESEARCH, 2020, 31 (05) : 1851 - 1862
  • [25] Transcriptome analysis reveals dynamic changes in the salt stress response in Salix
    Jie Zhou
    Jing Huang
    Xueyao Tian
    Jiwei Zheng
    Xudong He
    Journal of Forestry Research, 2020, 31 : 1851 - 1862
  • [26] Transcriptome analysis reveals key drought-stress-responsive genes in soybean
    Li, Mingqian
    Li, Hainan
    Sun, Anni
    Wang, Liwei
    Ren, Chuanyou
    Liu, Jiang
    Gao, Xining
    FRONTIERS IN GENETICS, 2022, 13
  • [27] Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq
    LI Ming-na
    LONG Rui-cai
    FENG Zi-rong
    LIU Feng-qi
    SUN Yan
    ZHANG Kun
    KANG Jun-mei
    WANG Zhen
    CAO Shi-hao
    Journal of Integrative Agriculture, 2018, 17 (01) : 184 - 196
  • [28] Transcriptome analysis of salt-responsive genes and SSR marker exploration in Carex rigescens using RNA-seq
    Li Ming-na
    Long Rui-cai
    Feng Zi-rong
    Liu Feng-qi
    Sun Yan
    Zhang, Kun
    Kang Jun-mei
    Wang Zhen
    Cao Shi-hao
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (01) : 184 - 196
  • [29] Transcriptome Analysis Reveals Candidate Genes Involved in Low Temperature Stress in Bell Pepper
    Ji, L.
    Li, P.
    Su, Zh
    Li, M.
    Wang, H.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2020, 67 (06) : 1116 - 1125
  • [30] Transcriptome Analysis Reveals Candidate Genes Involved in Low Temperature Stress in Bell Pepper
    L. Ji
    P. Li
    Zh. Su
    M. Li
    H. Wang
    Russian Journal of Plant Physiology, 2020, 67 : 1116 - 1125