MDR codes over Zk

被引:34
作者
Dougherty, ST [1 ]
Shiromoto, K
机构
[1] Univ Scranton, Dept Math, Scranton, PA 18510 USA
[2] Kumamoto Univ, Dept Math, Kumamoto 8608555, Japan
关键词
codes over rings; maximum distance with respect to rank codes;
D O I
10.1109/18.817524
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this correspondence, we study maximum distance with respect to rank codes over the ring Z(k). We generalize the construction of Bose-Chaidhhuri-Hocquenghem (BCH) and Reed-Solomon codes and apply the generalized Chinese remainder theorem to construct codes.
引用
收藏
页码:265 / 269
页数:5
相关论文
共 13 条
[1]   ON THE NONEXISTENCE OF CERTAIN MDS CODES AND PROJECTIVE-PLANES [J].
BRUEN, AA ;
SILVERMAN, R .
MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (02) :171-175
[2]   ON MDS CODES, ARCS IN PG(N, Q) WITH Q EVEN, AND A SOLUTION OF 3 FUNDAMENTAL PROBLEMS OF B-SEGRE [J].
BRUEN, AA ;
THAS, JA ;
BLOKHUIS, A .
INVENTIONES MATHEMATICAE, 1988, 92 (03) :441-459
[3]  
Denes J., 1974, Latin Squares and their Applications
[4]  
Dougherty ST., 1999, HOKKAIDO MATH J, V28, P253, DOI [10.14492/hokmj/1351001213, DOI 10.14492/H0KMJ/1351001213, DOI 10.14492/HOKMJ/1351001213]
[5]   OPTIMAL CODES, N-ARCS AND LAGUERRE GEOMETRY [J].
HEISE, W .
ACTA INFORMATICA, 1976, 6 (04) :403-406
[6]  
HEISE W, 1995, INFORMATIONS CODIERU
[7]  
Joshi D. D., 1958, Inf. Control, V1, P289, DOI [DOI 10.1016/S0019-9958(58)80006-69, 10.1016/S0019-9958(58)80006-6, DOI 10.1016/S0019-9958(58)80006-6]
[8]  
Kanwar P., 1997, Finite Fields and their Applications, V3, P334, DOI 10.1006/ffta.1997.0189
[9]  
Mac Williams F., 1977, THEORY ERROR CORRECT
[10]  
McDonald B.R., 1974, Pure and Applied Mathematics