On the kernel rule for function classification

被引:28
作者
Abraham, C.
Biau, G.
Cadre, B.
机构
[1] Univ Montpellier 2, CNRS, UMR 5149,Equipe Probabil & Stat, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
[2] INRA, ENSAm, UMR Biometrie & Anal Syst, F-34060 Montpellier 1, France
关键词
classification; consistency; kernel rule; metric entropy; universal consistency;
D O I
10.1007/s10463-006-0032-1
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be a random variable taking values in a function space F, and let Y be a discrete random label with values 0 and 1. We investigate asymptotic properties of the moving window classification rule based on independent copies of the pair (X, Y). Contrary to the finite dimensional case, it is shown that the moving window classifier is not universally consistent in the sense that its probability of error may not converge to the Bayes risk for some distributions of (X, Y). Sufficient conditions both on the space F and the distribution of X are then given to ensure consistency.
引用
收藏
页码:619 / 633
页数:15
相关论文
共 31 条
[1]   Unsupervised curve clustering using B-splines [J].
Abraham, C ;
Cornillon, PA ;
Matzner-Lober, E ;
Molinari, N .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (03) :581-595
[2]  
Akaike H., 1954, Ann. Inst. Statist. Math., Tokyo, V6, P127, DOI 10.1007/BF02900741
[3]   Wavelet methods for continuous-time prediction using Hilbert-valued autoregressive processes [J].
Antoniadis, A ;
Sapatinas, T .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) :133-158
[4]   Functional classification in Hilbert spaces [J].
Biau, G ;
Bunea, F ;
Wegkamp, MH .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (06) :2163-2172
[5]  
BOSQ D, 2000, LECT NOTES MATH
[6]  
Ciesielski Z., 1961, Trans. Amer. Math. Soc, V99, P403, DOI DOI 10.2307/1993554
[7]  
COVER TM, 1965, ANN MATH STAT, V36, P363
[8]   AN EQUIVALENCE THEOREM FOR L1 CONVERGENCE OF THE KERNEL REGRESSION ESTIMATE [J].
DEVROYE, L ;
KRZYZAK, A .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1989, 23 (01) :71-82
[9]  
Devroye L., 1996, A probabilistic theory of pattern recognition
[10]  
DIABONIANG S, 2001, NONPARAMETRIC REGRES