Nonlinear Observability Analysis and Joint State and Parameter Estimation in a Lettuce Greenhouse using Ensemble Kalman Filtering

被引:2
|
作者
Boersma, Sjoerd [1 ]
van Mourik, Simon [1 ]
Xin, Bolai [1 ]
Kootstra, Gert [1 ]
Bustos-Korts, Daniela [2 ]
机构
[1] Univ Wageningen, Farm Technol Grp, Wageningen, Netherlands
[2] Univ Wageningen, Math & Stat Methods Biometris Grp, Wageningen, Netherlands
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 32期
关键词
joint estimation; lettuce greenhouse; Ensemble Kalman filter; empirical observability Gramian; MODEL;
D O I
10.1016/j.ifacol.2022.11.129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Estimating crop states accurately and reliably through climate sensing is a promising alternative for high tech crop sensing investments. This paper explores and demonstrates the applicability of joint crop parameter and crop state estimation through indoor climate monitoring in a lettuce greenhouse system via Ensemble Kalman filtering combined with a nonlinear observability analysis via the empirical observability Gramian. The observability analysis indicated that crop dry-weight can be estimated from the indoor CO2 concentration, temperature and humidity, while simultaneously the parameter that represents the light use efficiency can be estimated and even corrected for. These outcomes were confirmed by a simulation study. This showed that the method is robust against one level of process and measurement noise, and a 50 % error in the model parameter that represents the light use efficiency. More precisely, it has been shown that improvements of 50 % of the dry-weight estimation in terms of average root mean squared error can be achieved with respect to the case where no Ensemble Kalman filtering and parameter update is used. Copyright (C) 2022 The Authors.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [1] Joint state and parameter estimation with an iterative ensemble Kalman smoother
    Bocquet, M.
    Sakov, P.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2013, 20 (05) : 803 - 818
  • [2] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [3] On Kalman Filtering and Observability in Nonlinear Sequential Relative Orbit Estimation
    Butcher, Eric A.
    Wang, Jingwei
    Alan Lovell, T.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (09) : 2167 - 2182
  • [4] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [5] Nonlinear State Estimation in a Chemical Reactor Using the Ensemble Kalman Filter
    Miranda, Livington
    Plaza, Douglas
    Cajo, Ricardo
    Herrera, Efren
    Cevallos, Holguer
    2023 IEEE 6TH COLOMBIAN CONFERENCE ON AUTOMATIC CONTROL, CCAC, 2023, : 230 - 235
  • [6] On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles
    Luo, Xiaodong
    Hoteit, Ibrahim
    Moroz, Irene M.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 1088 - +
  • [7] The study of joint input and state estimation with Kalman filtering
    Pan, Shuwen
    Su, Hongye
    Wang, Hong
    Chu, Jian
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2011, 33 (08) : 901 - 918
  • [8] Dynamic State Estimation and Parameter Calibration of a DFIG Using the Ensemble Kalman Filter
    Fan, Rui
    Huang, Zhenyu
    Wang, Shaobu
    Diao, Ruisheng
    Meng, Da
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [9] Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators
    Luo, Xiaodong
    Hoteit, Ibrahim
    MONTHLY WEATHER REVIEW, 2014, 142 (10) : 3696 - 3712
  • [10] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    WATER RESOURCES RESEARCH, 2009, 45