Structured graph learning for clustering and semi-supervised classification

被引:118
|
作者
Kang, Zhao [1 ]
Peng, Chong [2 ]
Cheng, Qiang [3 ,4 ]
Liu, Xinwang [5 ]
Peng, Xi [6 ]
Xu, Zenglin [7 ]
Tian, Ling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Univ Kentucky, Inst Biomed Informat, Lexington, KY 40506 USA
[4] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
[5] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Peoples R China
[6] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
[7] Harbin Inst Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
关键词
Similarity graph; Rank constraint; Clustering; Semi-supervised classification; Local ang global structure; Kernel method; FRAMEWORK;
D O I
10.1016/j.patcog.2020.107627
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesn't have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly c connected components if there are c clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Semi-supervised discriminative clustering with graph regularization
    Smieja, Marek
    Myronov, Oleksandr
    Tabor, Jacek
    KNOWLEDGE-BASED SYSTEMS, 2018, 151 : 24 - 36
  • [22] An efficient semi-supervised graph based clustering
    Viet-Vu Vu
    INTELLIGENT DATA ANALYSIS, 2018, 22 (02) : 297 - 307
  • [23] Semi-supervised graph clustering: a kernel approach
    Brian Kulis
    Sugato Basu
    Inderjit Dhillon
    Raymond Mooney
    Machine Learning, 2009, 74 : 1 - 22
  • [24] Semi-supervised graph clustering: a kernel approach
    Kulis, Brian
    Basu, Sugato
    Dhillon, Inderjit
    Mooney, Raymond
    MACHINE LEARNING, 2009, 74 (01) : 1 - 22
  • [25] Supervised neighborhood graph construction for semi-supervised classification
    Rohban, Mohammad Hossein
    Rabiee, Hamid R.
    PATTERN RECOGNITION, 2012, 45 (04) : 1363 - 1372
  • [26] Semi-Supervised Graph Classification: A Hierarchical Graph Perspective
    Li, Jia
    Rong, Yu
    Cheng, Hong
    Meng, Helen
    Huang, Wenbing
    Huang, Junzhou
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 972 - 982
  • [27] Graph Construction for Semi-Supervised Learning
    Berton, Lilian
    Lopes, Alneu de Andrade
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4343 - 4344
  • [28] Efficiently Learning the Graph for Semi-supervised Learning
    Sharma, Dravyansh
    Jones, Maxwell
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 1900 - 1910
  • [29] Self-weighted Multiple Kernel Learning for Graph-based Clustering and Semi-supervised Classification
    Kang, Zhao
    Lu, Xiao
    Yi, Jinfeng
    Xu, Zenglin
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2312 - 2318
  • [30] Elastic Net Hypergraph Learning for Image Clustering and Semi-Supervised Classification
    Liu, Qingshan
    Sun, Yubao
    Wang, Cantian
    Liu, Tongliang
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (01) : 452 - 463