Structured graph learning for clustering and semi-supervised classification

被引:118
|
作者
Kang, Zhao [1 ]
Peng, Chong [2 ]
Cheng, Qiang [3 ,4 ]
Liu, Xinwang [5 ]
Peng, Xi [6 ]
Xu, Zenglin [7 ]
Tian, Ling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
[3] Univ Kentucky, Inst Biomed Informat, Lexington, KY 40506 USA
[4] Univ Kentucky, Dept Comp Sci, Lexington, KY 40506 USA
[5] Natl Univ Def Technol, Sch Comp Sci, Changsha 410073, Peoples R China
[6] Sichuan Univ, Coll Comp Sci, Chengdu 610064, Peoples R China
[7] Harbin Inst Technol, Dept Comp Sci & Technol, Shenzhen 518055, Peoples R China
关键词
Similarity graph; Rank constraint; Clustering; Semi-supervised classification; Local ang global structure; Kernel method; FRAMEWORK;
D O I
10.1016/j.patcog.2020.107627
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesn't have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly c connected components if there are c clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods. (c) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Adaptive and structured graph learning for semi-supervised clustering
    Chen, Long
    Zhong, Zhi
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (04)
  • [2] Deep graph learning for semi-supervised classification
    Lin, Guangfeng
    Kang, Xiaobing
    Liao, Kaiyang
    Zhao, Fan
    Chen, Yajun
    PATTERN RECOGNITION, 2021, 118
  • [3] SemiGraphFL: Semi-supervised Graph Federated Learning for Graph Classification
    Tao, Ye
    Li, Ying
    Wu, Zhonghai
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVII, PPSN 2022, PT I, 2022, 13398 : 474 - 487
  • [4] Adaptive Graph Learning for Semi-supervised Classification of GCNs
    Wan, Yingying
    Zhan, Mengmeng
    Li, Yangding
    DATABASES THEORY AND APPLICATIONS (ADC 2021), 2021, 12610 : 13 - 22
  • [5] SIMILARITY LEARNING BASED ON SEMI-SUPERVISED GRAPH FOR CLASSIFICATION
    Wang, Qianying
    Yuen, Pong C.
    Feng, Guocan
    Wang, Patrick S.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2012, 26 (04)
  • [6] A survey on semi-supervised graph clustering
    Daneshfar, Fatemeh
    Soleymanbaigi, Sayvan
    Yamini, Pedram
    Amini, Mohammad Sadra
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133 (133)
  • [7] Semi-supervised clustering with deep metric learning and graph embedding
    Xiaocui Li
    Hongzhi Yin
    Ke Zhou
    Xiaofang Zhou
    World Wide Web, 2020, 23 : 781 - 798
  • [8] Semi-supervised clustering with deep metric learning and graph embedding
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 781 - 798
  • [9] Robust Graph Hyperparameter Learning for Graph Based Semi-supervised Classification
    Muandet, Krikamol
    Marukatat, Sanparith
    Nattee, Cholwich
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 98 - +
  • [10] Semi-Supervised Hierarchical Graph Classification
    Li, Jia
    Huang, Yongfeng
    Chang, Heng
    Rong, Yu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (05) : 6265 - 6276