Compositional texture engineering for highly stable wide-bandgap perovskite solar cells

被引:268
作者
Jiang, Qi [1 ]
Tong, Jinhui [1 ]
Scheidt, Rebecca A. [1 ]
Wang, Xiaoming [2 ,3 ]
Louks, Amy E. [4 ]
Xian, Yeming [2 ,3 ]
Tirawat, Robert [1 ]
Palmstrom, Axel F. [4 ]
Hautzinger, Matthew P. [1 ]
Harvey, Steven P. [4 ]
Johnston, Steve [4 ]
Schelhas, Laura T. [1 ]
Larson, Bryon W. [1 ]
Warren, Emily L. [1 ]
Beard, Matthew C. [1 ,5 ]
Berry, Joseph J. [4 ,5 ,6 ]
Yan, Yanfa [2 ,3 ]
Zhu, Kai [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[2] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[3] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA
[4] Natl Renewable Energy Lab, Mat Sci Ctr, Golden, CO 80401 USA
[5] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[6] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
LEAD HALIDE PEROVSKITES; EFFICIENT; SEGREGATION; FILMS;
D O I
10.1126/science.adf0194
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br-I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br-I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75-electron volt Br-I mixed WBG perovskite films with reduced defect density. With this approach, we obtained 1.75-electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65 degrees C). When further integrated with 1.25-electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.
引用
收藏
页码:1295 / 1300
页数:6
相关论文
共 50 条
[21]   Quadruple-Cation Wide-Bandgap Mixed-Halide Tin Perovskite Solar Cells [J].
Kuan, Chun-Hsiao ;
Chen, Yu-Cheng ;
Narra, Sudhakar ;
Chang, Chun-Fu ;
Tsai, Yi-Wei ;
Lin, Jhih-Min ;
Chen, Guan-Ruei ;
Diau, Eric Wei-Guang .
ACS ENERGY LETTERS, 2024, 9 (05) :2351-2357
[22]   Crystallization Manipulation of Wide-bandgap Perovskite by Amino Acid Derivative for High Performance Solar Cells [J].
Wu, Minfang ;
Xu, Tianfei ;
Li, Nan ;
Wang, Zezhang ;
Wang, Borui ;
Gong, Jinyun ;
Liu, Shengzhong ;
Xiang, Wanchun .
ADVANCED FUNCTIONAL MATERIALS, 2025,
[23]   Accumulated Structural Evolution under Diurnal Cycling Degrades Wide-Bandgap Perovskite Solar Cells [J].
Zhao, Tonghan ;
Elshanawany, Mahmoud M. ;
Singh, Roja ;
Guo, Renjun ;
Richards, Bryce S. ;
Paetzold, Ulrich W. .
ACS ENERGY LETTERS, 2025,
[24]   Wide-Bandgap Perovskite Solar Cells With Large Open-Circuit Voltage of 1653mV Through Interfacial Engineering [J].
Hu, Xiaowen ;
Jiang, Xiao-Fang ;
Xing, Xiaobo ;
Nian, Li ;
Liu, Xiaoyang ;
Huang, Rong ;
Wang, Kai ;
Yip, Hin-Lap ;
Zhou, Guofu .
SOLAR RRL, 2018, 2 (08)
[25]   Dual Field Passivation Strategy for High-Performance Wide-Bandgap Perovskite Solar Cells [J].
Feng, Xuzheng ;
Li, Xing ;
Li, Zhuoxin ;
Xue, Yufei ;
Chen, Xianggang ;
Sun, Xiaoxu ;
Tang, Jixiang ;
Liu, Shuyi ;
Wang, Zishuo ;
Xie, Yuhang ;
Jia, Rui ;
Dai, Songyuan ;
Gao, Guoping ;
Cai, Molang .
ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (17) :25883-25893
[26]   One-Step Slot-Die Coating Deposition of Wide-Bandgap Perovskite Absorber for Highly Efficient Solar Cells [J].
Bernard, Sophie ;
Jutteau, Sebastien ;
Mejaouri, Salim ;
Cacovich, Stefania ;
Zimmermann, Iwan ;
Yaiche, Armelle ;
Gbegnon, Stephanie ;
Loisnard, Dominique ;
Collin, Stephane ;
Duchatelet, Aurelien ;
Sauvage, Frederic ;
Rousset, Jean .
SOLAR RRL, 2021, 5 (09)
[27]   Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers [J].
Manzoor, Salman ;
Haeusele, Jakob ;
Bush, Kevin A. ;
Palmstrom, Axel F. ;
Carpenter, Joe, III ;
Yu, Zhengshan J. ;
Bent, Stacey F. ;
Mcgehee, Michael D. ;
Holman, Zachary C. .
OPTICS EXPRESS, 2018, 26 (21) :27441-27460
[28]   Compositional engineering for lead halide perovskite solar cells [J].
Wang, Haoxin ;
Zhang, Lixiu ;
Cheng, Ming ;
Ding, Liming .
JOURNAL OF SEMICONDUCTORS, 2022, 43 (08)
[29]   Phase-Stable Wide-Bandgap Perovskites for Four-Terminal Perovskite/Silicon Tandem Solar Cells with Over 30% Efficiency [J].
Yao, Yuxin ;
Hang, Pengjie ;
Li, Biao ;
Hu, Zechen ;
Kan, Chenxia ;
Xie, Jiangsheng ;
Wang, Ying ;
Zhang, Yiqiang ;
Yang, Deren ;
Yu, Xuegong .
SMALL, 2022, 18 (38)
[30]   Organizing Uniform Phase Distribution in Methylammonium-Free 1.77 eV Wide-Bandgap Inverted Perovskite Solar Cells [J].
Zhang, Zhanfei ;
Wang, Jianli ;
Liang, Jianghu ;
Zheng, Yiting ;
Wu, Xueyun ;
Tian, Congcong ;
Sun, Anxin ;
Huang, Ying ;
Zhou, Zhuang ;
Yang, Yajuan ;
Liu, Yuan ;
Tang, Chen ;
Chen, Zhenhua ;
Chen, Chun-Chao .
SMALL, 2023, 19 (40)