Compositional texture engineering for highly stable wide-bandgap perovskite solar cells

被引:202
|
作者
Jiang, Qi [1 ]
Tong, Jinhui [1 ]
Scheidt, Rebecca A. [1 ]
Wang, Xiaoming [2 ,3 ]
Louks, Amy E. [4 ]
Xian, Yeming [2 ,3 ]
Tirawat, Robert [1 ]
Palmstrom, Axel F. [4 ]
Hautzinger, Matthew P. [1 ]
Harvey, Steven P. [4 ]
Johnston, Steve [4 ]
Schelhas, Laura T. [1 ]
Larson, Bryon W. [1 ]
Warren, Emily L. [1 ]
Beard, Matthew C. [1 ,5 ]
Berry, Joseph J. [4 ,5 ,6 ]
Yan, Yanfa [2 ,3 ]
Zhu, Kai [1 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA
[2] Univ Toledo, Dept Phys & Astron, Toledo, OH 43606 USA
[3] Univ Toledo, Wright Ctr Photovolta Innovat & Commercializat, Toledo, OH 43606 USA
[4] Natl Renewable Energy Lab, Mat Sci Ctr, Golden, CO 80401 USA
[5] Univ Colorado, Renewable & Sustainable Energy Inst, Boulder, CO 80309 USA
[6] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
LEAD HALIDE PEROVSKITES; EFFICIENT; SEGREGATION; FILMS;
D O I
10.1126/science.adf0194
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The development of highly stable and efficient wide-bandgap (WBG) perovskite solar cells (PSCs) based on bromine-iodine (Br-I) mixed-halide perovskite (with Br greater than 20%) is critical to create tandem solar cells. However, issues with Br-I phase segregation under solar cell operational conditions (such as light and heat) limit the device voltage and operational stability. This challenge is often exacerbated by the ready defect formation associated with the rapid crystallization of Br-rich perovskite chemistry with antisolvent processes. We combined the rapid Br crystallization with a gentle gas-quench method to prepare highly textured columnar 1.75-electron volt Br-I mixed WBG perovskite films with reduced defect density. With this approach, we obtained 1.75-electron volt WBG PSCs with greater than 20% power conversion efficiency, approximately 1.33-volt open-circuit voltage (Voc), and excellent operational stability (less than 5% degradation over 1100 hours of operation under 1.2 sun at 65 degrees C). When further integrated with 1.25-electron volt narrow-bandgap PSC, we obtained a 27.1% efficient, all-perovskite, two-terminal tandem device with a high Voc of 2.2 volts.
引用
收藏
页码:1295 / 1300
页数:6
相关论文
共 50 条
  • [1] Cation Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Zhao, Xiaoni
    Cao, Jiali
    Nie, Ting
    Liu, Shengzhong
    Fang, Zhimin
    SOLAR RRL, 2024, 8 (20):
  • [2] Compositional and interfacial engineering for improved light stability of flexible wide-bandgap perovskite solar cells
    Wasiak-Maciejak, Anna
    Przypis, Lukasz
    Zuraw, Wiktor
    Rycek, Kinga
    Janicka, Patrycja
    Scigaj, Mateusz
    Dyk, Konrad
    Lai, Huagui
    Piejko, Adrianna
    Pucicki, Damian
    Fu, Fan
    Kinzhybalo, Vasyl
    Wojciechowski, Konrad
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (10) : 7335 - 7346
  • [3] Stable wide-bandgap perovskite solar cells for tandem applications
    Cheng, Zhendong
    Zhang, Meng
    Zhang, Yan
    Qi, Wenjing
    Wang, Zhaoyi
    Liu, Bo
    Di, Dawei
    NANO ENERGY, 2024, 127
  • [4] Highly Efficient and Stable Wide-Bandgap Perovskite Solar Cells via Strain Management
    Hang, Pengjie
    Kan, Chenxia
    Li, Biao
    Yao, Yuxin
    Hu, Zechen
    Zhang, Yiqiang
    Xie, Jiangsheng
    Wang, Ying
    Yang, Deren
    Yu, Xuegong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (11)
  • [5] Chloride-Based Additive Engineering for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Shen, Xinyi
    Gallant, Benjamin M.
    Holzhey, Philippe
    Smith, Joel A.
    Elmestekawy, Karim A.
    Yuan, Zhongcheng
    Rathnayake, P. V. G. M.
    Bernardi, Stefano
    Dasgupta, Akash
    Kasparavicius, Ernestas
    Malinauskas, Tadas
    Caprioglio, Pietro
    Shargaieva, Oleksandra
    Lin, Yen-Hung
    McCarthy, Melissa M.
    Unger, Eva
    Getautis, Vytautas
    Widmer-Cooper, Asaph
    Herz, Laura M.
    Snaith, Henry J.
    ADVANCED MATERIALS, 2023, 35 (30)
  • [6] Multifunctional Buffer Layer Engineering for Efficient and Stable Wide-Bandgap Perovskite and Perovskite/Silicon Tandem Solar Cells
    Ji, Xiaofei
    Ding, Yian
    Bi, Leyu
    Yang, Xin
    Wang, Jiarong
    Wang, Xiaoting
    Liu, Yuanzhong
    Yan, Yiran
    Zhu, Xiangrong
    Huang, Jin
    Yang, Liyou
    Fu, Qiang
    Jen, Alex K. -Y.
    Lu, Linfeng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (32)
  • [7] Tailoring the Grain Boundaries of Wide-Bandgap Perovskite Solar Cells by Molecular Engineering
    Emshadi, Khalid
    Ghimire, Nabin
    Gurung, Ashim
    Bahrami, Behzad
    Pathak, Rajesh
    Bobba, Raja Sekhar
    Lamsal, Buddhi Sagar
    Rahman, Sheikh Ifatur
    Chowdhury, Ashraful Haider
    Chen, Ke
    Laskar, Md Ashiqur Rahman
    Luo, Wenqin
    Elbohy, Hytham
    Qiao, Quinn
    SOLAR RRL, 2020, 4 (12)
  • [8] Recent Advances in Wide-Bandgap Perovskite Solar Cells
    Mei, Jianjun
    Yan, Feng
    ADVANCED MATERIALS, 2025,
  • [9] Wide-bandgap, low-bandgap, and tandem perovskite solar cells
    Song, Zhaoning
    Chen, Cong
    Li, Chongwen
    Awni, Rasha A.
    Zhao, Dewei
    Yan, Yanfa
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (09)
  • [10] Tailoring the Cs/Br Ratio for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Cao, Jiali
    Fang, Zhimin
    Liu, Shengzhong
    SOLAR RRL, 2023, 7 (02)