Introducing Nonuniform Grids into the FDTD Solution of the Transmission-Line Equations by Renormalizing the Per-Unit-Length Parameters

被引:4
|
作者
Armenta, Roberto B. [1 ]
Sarris, Costas D. [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Distributed parameter circuits; finite-difference time-domain (FDTD) methods; transmission lines; FINITE-DIFFERENCE; SUBGRIDDING ALGORITHM; DOMAIN; TIME; GEOMETRY;
D O I
10.1109/TEMC.2009.2019763
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A challenging aspect of using the finite-difference time-domain (FDTD) method to solve nonuniform transmission-line equations is to choose a discretization grid with an adequate spatial resolution. When the per-unit-length parameters have strong variations, an efficient problem-solving strategy requires the use of a nonuniform discretization grid. This paper presents a nonuniform gridding method that makes use of an analytically defined coordinate transformation to map a nonuniformly spaced grid onto a uniformly spaced grid where the standard FDTD time stepping equations can be applied. This approach absorbs all the details of the nonuniform grid into effective or renormalized per-unit-length parameters.
引用
收藏
页码:818 / 824
页数:7
相关论文
共 9 条