Chaotic synchronization in coupled spatially extended beam-plasma systems

被引:29
作者
Filatov, Roman A. [1 ]
Hramov, Alexander E. [1 ]
Koronovskii, Alexey A. [1 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Fac Nonlinear Proc, Saratov 410012, Russia
基金
俄罗斯基础研究基金会;
关键词
coupled spatially extended systems; chaotic synchronization; generalized synchronization regime; time-scale synchronization; Pierce diode;
D O I
10.1016/j.physleta.2006.05.039
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The appearance of the chaotic synchronization regimes has been discovered for the coupled spatially extended beam-plasma Pierce systems. The coupling was introduced only on the right bound of each subsystem. It has been shown that with coupling increase the spatially extended beam-plasma systems show the transition from asynchronous behavior to the phase synchronization and then to the complete synchronization regime. For the consideration of the chaotic synchronization we used the concept of time-scale synchronization described in work [A.E. Hramov, A.A. Koronovskii, Chaos 14 (3) (2004) 603] and based on the introduction of the continuous set of phases of chaotic signal. In case of unidirectional coupling the generalized synchronization regime has been observed in the spatially extended beam-plasma systems. The generalized synchronization appearance mechanism has been analyzed by means of the offered modified system approach [A.E. Hramov, A.A. Koronovskii, Phys. Rev. E 71 (6) (2005) 067201]. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 308
页数:8
相关论文
共 59 条
[1]   Generalized synchronization of chaos: The auxiliary system approach [J].
Abarbanel, HDI ;
Rulkov, NF ;
Sushchik, MM .
PHYSICAL REVIEW E, 1996, 53 (05) :4528-4535
[2]  
Anishchenko VS, 2001, NONLINEAR DYNAMICS C
[3]  
[Anonymous], 2003, CONTINUOUS WAVELET A
[4]  
[Anonymous], 1993, Ten Lectures of Wavelets
[5]  
[Anonymous], SYNHRONIZATION UNIVE
[6]   Characterization of intermittent lag synchronization [J].
Boccaletti, S ;
Valladares, DL .
PHYSICAL REVIEW E, 2000, 62 (05) :7497-7500
[7]   Synchronization in nonidentical extended systems [J].
Boccaletti, S ;
Bragard, J ;
Arecchi, FT ;
Mancini, H .
PHYSICAL REVIEW LETTERS, 1999, 83 (03) :536-539
[8]   The synchronization of chaotic systems [J].
Boccaletti, S ;
Kurths, J ;
Osipov, G ;
Valladares, DL ;
Zhou, CS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 366 (1-2) :1-101
[9]   Synchronization is enhanced in weighted complex networks [J].
Chavez, M ;
Hwang, DU ;
Amann, A ;
Hentschel, HGE ;
Boccaletti, S .
PHYSICAL REVIEW LETTERS, 2005, 94 (21)
[10]   A secure communication scheme based on the phase synchronization of chaotic systems [J].
Chen, JY ;
Wong, KW ;
Cheng, LM ;
Shuai, JW .
CHAOS, 2003, 13 (02) :508-514