Critical structure factor in Ising systems -: art. no. 026112

被引:22
作者
Martín-Mayor, V
Pelissetto, A
Vicari, E
机构
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] Ist Nazl Fis Nucl, I-00185 Rome, Italy
[3] INFM, SMC, I-00185 Rome, Italy
[4] Univ Pisa, Dipartimento Fis, I-56127 Pisa, Italy
[5] Ist Nazl Fis Nucl, I-56127 Pisa, Italy
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 02期
关键词
D O I
10.1103/PhysRevE.66.026112
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic lattices of size L-3 with L=128 and 256. We determine the corresponding structure factor (Fourier transform of the two-point function) and compare it with several approximations and with experimental results. We also compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the deviations from the Ornstein-Zernike expression of Puglielli and Ford.
引用
收藏
页码:1 / 026112
页数:9
相关论文
共 56 条
[21]   Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW E, 1999, 60 (04) :3526-3563
[22]   Critical limit and anisotropy in the two-point correlation function of three-dimensional O(N) models [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
EUROPHYSICS LETTERS, 1997, 38 (08) :577-582
[23]   Two-point correlation function of three-dimensional O(N) models: The critical limit and anisotropy [J].
Campostrini, M ;
Pelissetto, A ;
Rossi, P ;
Vicari, E .
PHYSICAL REVIEW E, 1998, 57 (01) :184-210
[24]   Universal amplitude ratios in the three-dimensional Ising model [J].
Caselle, M ;
Hasenbusch, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (14) :4963-4982
[25]   Non-perturbative states in the 3D φ4 theory [J].
Caselle, M ;
Hasenbusch, M ;
Provero, P .
NUCLEAR PHYSICS B, 1999, 556 (03) :575-600
[26]   CORRELATION-FUNCTION NEAR THE CRITICAL MIXING POINT OF A BINARY-LIQUID [J].
CHANG, RF ;
BURSTYN, H ;
SENGERS, JV .
PHYSICAL REVIEW A, 1979, 19 (02) :866-882
[27]   Monte Carlo multiple-scattering simulation and data correction in small-angle static light scattering [J].
Cipelletti, L .
PHYSICAL REVIEW E, 1997, 55 (06) :7733-7740
[28]  
COMBESCOT M, 1975, PHYS REV B, V11, P4661, DOI 10.1103/PhysRevB.11.4661
[29]   Universal critical-scattering function: An experimental approach [J].
Damay, P ;
Leclercq, F ;
Magli, R ;
Formisano, F ;
Lindner, P .
PHYSICAL REVIEW B, 1998, 58 (18) :12038-12043
[30]   CRITICAL SCATTERING FUNCTION IN A BINARY FLUID MIXTURE - A STUDY OF SODIUM-DEUTEROAMMONIA SOLUTION AT THE CRITICAL CONCENTRATION BY SMALL-ANGLE NEUTRON-SCATTERING [J].
DAMAY, P ;
LECLERCQ, F ;
CHIEUX, P .
PHYSICAL REVIEW B, 1989, 40 (07) :4696-4708