Decimation and harmonic inversion of periodic orbit signals

被引:41
作者
Main, J [1 ]
Dando, PA
Belkic, D
Taylor, HS
机构
[1] Univ Stuttgart, Inst Theoret Phys & Synerget, D-70550 Stuttgart, Germany
[2] Univ So Calif, Dept Chem, Los Angeles, CA 90089 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1088/0305-4470/33/6/311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either decimated linear predictor, decimated Pade approximant, or decimated signal diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter diagonalization method.
引用
收藏
页码:1247 / 1263
页数:17
相关论文
共 33 条
[11]   SYMMETRY DECOMPOSITION OF CHAOTIC DYNAMICS [J].
CVITANOVIC, P ;
ECKHARDT, B .
NONLINEARITY, 1993, 6 (02) :277-311
[12]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[13]   ENTIRE FREDHOLM DETERMINANTS FOR EVALUATION OF SEMICLASSICAL AND THERMODYNAMICAL SPECTRA [J].
CVITANOVIC, P ;
VATTAY, G .
PHYSICAL REVIEW LETTERS, 1993, 71 (25) :4138-4141
[14]   A Fredholm determinant for semiclassical quantization [J].
Cvitanovic, Predrag ;
Rosenqvist, Per E. ;
Vattay, Gabor ;
Rugh, Hans Henrik .
CHAOS, 1993, 3 (04) :619-636
[15]   RESUMMATION OF CLASSICAL AND SEMICLASSICAL PERIODIC-ORBIT FORMULAS [J].
ECKHARDT, B ;
RUSSBERG, G .
PHYSICAL REVIEW E, 1993, 47 (03) :1578-1588
[16]  
Edwards H.M., 1974, Riemann's Zeta Function
[17]   PHASE-INTEGRAL APPROXIMATION IN MOMENTUM SPACE AND BOUND STATES OF AN ATOM [J].
GUTZWILLER, MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (10) :1979-+
[18]  
HASEGAWA H, 1989, PROG THEOR PHYS SUPP, P198, DOI 10.1143/PTPS.98.198
[19]   High resolution quantum recurrence spectra: Beyond the uncertainty principle [J].
Main, J ;
Mandelshtam, VA ;
Taylor, HS .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4351-4354
[20]   Semiclassical spectra and diagonal matrix elements by harmonic inversion of cross-correlated periodic orbit sums [J].
Main, J ;
Weibert, K ;
Mandelshtam, VA ;
Wunner, G .
PHYSICAL REVIEW E, 1999, 60 (02) :1639-1642