Asymptotic Stability of Bresse System with One Infinite Memory in the Longitudinal Displacements

被引:23
作者
Guesmia, Aissa [1 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Bat A,Ile Saulcy, F-57045 Metz 01, France
关键词
Bresse system; infinite memory; asymptotic behavior; energy method; integral inequalities; DECAY-RATE; BEHAVIOR; RATES;
D O I
10.1007/s00009-017-0877-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic stability of one-dimensional linear Bresse systems under infinite memories was proved by Guesmia and Kafini (Math Methods Appl Sci 38: 2389-2402, 2015) under three infinite memories, Guesmia and Kirane (Z Angew Math Phys 67: 1-39, 2016) under two infinite memories, and De Lima Santos et al. (Q Appl Math 73: 23-54, 2015) under one infinite memory acting on the shear angle displacements. The subject of this paper is to complete these results by proving that the asymptotic stability of Bresse systems holds also under one infinite memory acting on the longitudinal displacements.
引用
收藏
页数:19
相关论文
共 24 条
[11]   Bresse system with infinite memories [J].
Guesmia, Aissa ;
Kafini, Mohammad .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) :2389-2402
[12]   Asymptotic behavior for coupled abstract evolution equations with one infinite memory [J].
Guesmia, Aissa .
APPLICABLE ANALYSIS, 2015, 94 (01) :184-217
[13]   Asymptotic stability of abstract dissipative systems with infinite memory [J].
Guesmia, Aissa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 382 (02) :748-760
[14]  
Lagnese J.E., 1994, Modeling, Analysis and Control of Dynamic Elastic Multilink Structures
[15]   MODELING OF DYNAMIC NETWORKS OF THIN THERMOELASTIC BEAMS [J].
LAGNESE, JE ;
LEUGERING, G ;
SCHMIDT, EJPG .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (05) :327-358
[16]   Energy decay rate of the thermoelastic Bresse system [J].
Liu, Zhuangyi ;
Rao, Bopeng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (01) :54-69
[17]   Weakly locally internal stabilization of elastic Bresse system [J].
Noun, Nahla ;
Wehbe, Ali .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (9-10) :493-498
[18]   Stability of Timoshenko systems with past history [J].
Rivera, Jaime E. Munoz ;
Sare, Hugo D. Fernandez .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :482-502
[19]  
Santos MD, 2015, Q APPL MATH, V73, P23
[20]   Asymptotic stability for Bresse systems [J].
Soriano, J. A. ;
Charles, Wenden ;
Schulz, Rodrigo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (01) :369-380