Sparsity Fine Tuning in Wavelet Domain With Application to Compressive Image Reconstruction

被引:14
作者
Dong, Weisheng [1 ]
Wu, Xiaolin [2 ,3 ]
Shi, Guangming [1 ]
机构
[1] Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
[2] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
[3] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai 200240, Peoples R China
关键词
Compressive sensing; wavelet-based sparse representation; structured sparsity; SIGNAL RECOVERY; L(1)-MINIMIZATION; ALGORITHMS; VIDEO;
D O I
10.1109/TIP.2014.2363616
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In compressive sensing, wavelet space is widely used to generate sparse signal (image signal in particular) representations. In this paper, we propose a novel approach of statistical context modeling to increase the level of sparsity of wavelet image representations. It is shown, contrary to a widely held assumption, that high-frequency wavelet coefficients have nonzero mean distributions if conditioned on local image structures. Removing this bias can make wavelet image representations sparser, i.e., having a greater number of zero and close-to-zero coefficients. The resulting unbiased probability models can significantly improve the performance of existing wavelet-based compressive image reconstruction methods in both PSNR and visual quality. An efficient algorithm is presented to solve the compressive image recovery (CIR) problem using the refined models. Experimental results on both simulated compressive sensing (CS) image data and real CS image data show that the new CIR method significantly outperforms existing CIR methods in both PSNR and visual quality.
引用
收藏
页码:5249 / 5262
页数:14
相关论文
共 38 条
[1]   Model-Based Compressive Sensing [J].
Baraniuk, Richard G. ;
Cevher, Volkan ;
Duarte, Marco F. ;
Hegde, Chinmay .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (04) :1982-2001
[2]   PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing [J].
Barnes, Connelly ;
Shechtman, Eli ;
Finkelstein, Adam ;
Goldman, Dan B. .
ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (03)
[3]   A review of image denoising algorithms, with a new one [J].
Buades, A ;
Coll, B ;
Morel, JM .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :490-530
[4]   Signal recovery from random projections [J].
Candès, E ;
Romberg, J .
COMPUTATIONAL IMAGING III, 2005, 5674 :76-86
[5]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[6]   Near-optimal signal recovery from random projections: Universal encoding strategies? [J].
Candes, Emmanuel J. ;
Tao, Terence .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) :5406-5425
[7]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[8]   Spatially adaptive wavelet thresholding with context modeling for image denoising [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1522-1531
[9]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095