Dynamic behavior of unsteady-state membrane gas separation: Modelling of a closed-mode operation for a membrane module

被引:28
作者
Trubyanov, Maxim M. [1 ]
Kirillov, Sergei Y. [1 ]
Vorotyntsev, Andrey V. [1 ]
Sazanova, Tatyana S. [1 ]
Atlaskin, Artem A. [1 ]
Petukhov, Anton N. [1 ]
Kirillov, Yuri P. [1 ]
Vorotyntsev, Ilya V. [1 ]
机构
[1] Nizhnii Novgorod State Tech Univ, Nanotechnol & Biotechnol Dept, Lab Membrane & Catalyt Proc, 24 Minin Str, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
Membrane gas separation; Separation dynamics; Unsteady-state; Membrane module; Closed-mode operation; VACUUM SWING PERMEATION; HIGH PURIFICATION; PULSED RETENTATE; CO2; CAPTURE; OPTIMIZATION; REMOVAL; MIXTURE; OPPORTUNITIES; DISTILLATION; STEADY;
D O I
10.1016/j.memsci.2019.117173
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Membrane gas separations under unsteady conditions provide various opportunities for enhancement of separation performance, particularly in niche applications. An original model describing the dynamics of a closed-mode operation in a cross-flow membrane module is developed for optimization of a pulsed-retentate separation technique. The closed-mode operation is a key step of a pulsed retentate process providing an improvement of separation performance compared to a conventional steady-state separation without productivity losses. The closed-mode operation results in the evolution of a composition profile in a membrane module over time under a constant transmembrane pressure while the feed is being continuously admitted, and a permeate is being evacuated with no retentate withdrawal. During this step the highest possible concentration gradient is realized inside the module between the feed inlet and retentate outlet. The developed model reflects the dynamics of establishing the composition profile under closed-mode operation, linking concentrations, coordinates, and time, which is essential for the optimization of the unsteady membrane separation, as well as for the initial period after either the start of the process or the change of conditions. An axial mixing effect is considered taking into account the deviations from a plug flow present in a real process. The mathematical model is verified through a dedicated experimental study of two binary mixtures separation (CO2/N-2, and CO2/CH4) employing experimental techniques based on periodic sampling for gas chromatography analysis and in-situ monitoring by mass spectrometry. The case of a more permeable impurity removal from a less permeable main component is considered. An analytical solution is provided for the membrane module with zero retentate flow.
引用
收藏
页数:14
相关论文
共 48 条
[1]  
Abhisha VS, 2018, Transport properties of polymeric membranes, P363, DOI [10.1016/B978-0-12-809884-4.00018-5, DOI 10.1016/B978-0-12-809884-4.00018-5]
[2]   The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes [J].
Akhmetshina, Alsu A. ;
Davletbaeva, Ilsiya M. ;
Grebenschikova, Ekaterina S. ;
Sazanova, Tatyana S. ;
Petukhov, Anton N. ;
Atlaskin, Artem A. ;
Razov, Evgeny N. ;
Zaripov, Ilnaz I. ;
Martins, Carla F. ;
Neves, Luisa A. ;
Vorotyntsev, Ilya V. .
MEMBRANES, 2016, 6 (01)
[3]  
[Anonymous], 1953, HIGHER TRANSCENDENTA
[4]   Total Reflux Operating Mode of Apparatuses of a Membrane Column Type during High Purification of Gases to Remove a Highly Permeable Impurity [J].
Atlaskin, A. A. ;
Trubyanov, M. M. ;
Yanbikov, N. R. ;
Bukovsky, M. V. ;
Drozdov, P. N. ;
Vorotyntsev, V. M. ;
Vorotyntsev, I. V. .
PETROLEUM CHEMISTRY, 2018, 58 (06) :508-517
[5]   Comprehensive experimental study of membrane cascades type of "continuous membrane column" for gases high-purification [J].
Atlaskin, Artem A. ;
Trubyanov, Maxim M. ;
Yanbikov, Nail R. ;
Vorotyntsev, Andrey V. ;
Drozdov, Pavel N. ;
Vorotyntsev, Vladimir M. ;
Vorotyntsev, Ilya V. .
JOURNAL OF MEMBRANE SCIENCE, 2019, 572 :92-101
[6]   CO2 capture from natural gas power plants using selective exhaust gas recycle membrane designs [J].
Baker, Richard W. ;
Freeman, Brice ;
Kniep, Jay ;
Wei, Xiaotong ;
Merkel, Tim .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2017, 66 :35-47
[7]   Modeling of Fast-Permeant Component Removal from Gas Mixture in a Membrane Module with Pulsed Retentate [J].
Battalov, S. V. ;
Sazanova, T. S. ;
Trubyanov, M. M. ;
Puzanov, E. S. ;
Vorotyntsev, V. M. ;
Drozdov, P. N. ;
Vorotyntsev, I. V. .
PETROLEUM CHEMISTRY, 2018, 58 (09) :806-814
[8]   MEMBRANE GAS SEPARATION MODULE WITH PULSED RETENTATE FOR LOW-PERMEABLE COMPONENT RECOVERY [J].
Battalov, Stanislav V. ;
Trubyanov, Maxim M. ;
Puzanov, Egor S. ;
Sazanova, Tatyana S. ;
Drozdov, Pavel N. ;
Vorotyntsev, Ilya V. .
CHEMICAL AND PROCESS ENGINEERING-INZYNIERIA CHEMICZNA I PROCESOWA, 2019, 40 (01) :57-65
[9]   SEPARATION OF GAS-MIXTURES IN UNSTEADY-STATE CONDITIONS [J].
BECKMAN, IN ;
SHELEKHIN, AB ;
TEPLYAKOV, VV .
JOURNAL OF MEMBRANE SCIENCE, 1991, 55 (03) :283-297
[10]   SELECTIVE-MEMBRANE VALVE FOR TERNARY GAS-MIXTURE SEPARATION - MODEL OF MASS-TRANSFER AND EXPERIMENTAL TEST [J].
BECKMAN, IN ;
BESSARABOV, DG ;
TEPLYAKOV, VV .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1993, 32 (09) :2017-2022