Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods

被引:18
作者
Ahmadi, Mehdi [1 ]
Ascough, James C., II [2 ]
DeJonge, Kendall C. [3 ]
Arabi, Mazdak [1 ]
机构
[1] Colorado State Univ, Dept Civil & Environm Engn, Ft Collins, CO 80523 USA
[2] USDA ARS, ASRU, Ft Collins, CO 80526 USA
[3] USDA ARS, WMRU, Ft Collins, CO 80526 USA
基金
美国食品与农业研究所;
关键词
Morris sensitivity analysis; Formal likelihood function; Hydrology; Water quality; SWAT model; UNCERTAINTY ANALYSIS; GLOBAL SENSITIVITY; AUTOMATIC CALIBRATION; MULTIOBJECTIVE AUTOCALIBRATION; PARAMETER UNCERTAINTY; CLIMATE-CHANGE; RIVER; MORRIS; EQUIFINALITY; SIMULATION;
D O I
10.1016/j.ecolmodel.2014.02.013
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morris was used for sensitivity analysis of streamflow, combined nitrate (NO3) and nitrite (NO2) fluxes, and total phosphorous (TP) at five gage stations in a primarily agricultural watershed in the Midwestern United States. The Morris method was analyzed for 36 combinations of informal likelihood functions, gage stations, and SWAT model output responses, including relative error mass balance (BIAS), Nash-Sutcliffe efficiency (NSE) coefficient, and root mean square error (RMSE) for peak and low fluxes, and one formal likelihood function that aggregates information content from multiple sites and multiple variables using 65 SWAT parameters. The correlation between sensitivity measures from different likelihood functions was also assessed using the Spearman's rank correlation coefficient. Sensitivity of parameters using different likelihood functions was highly variable, although sensitivity of streamflow and TP showed a high correlation. A stronger correlation between sensitivity of nutrient fluxes at the upstream stations as well as the stations closer to the watershed outlets was evident. Comparison of the combined rank of parameters from informal likelihood functions and the ranks obtained from the formal likelihood function confirmed formal likelihood function ability to effectively identify both sensitive and insensitive parameters with less computational and analysis burden. Uncertainty analysis of the Morris results using bootstrap replications showed that both formal and informal likelihood functions identified sensitive parameters with high confidence. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 67
页数:14
相关论文
共 84 条
[1]  
Ahmadi M, 2012, THESIS COLORADO STAT
[2]   Impact of climate change on diffuse pollutant fluxes at the watershed scale [J].
Ahmadi, Mehdi ;
Records, Rosemary ;
Arabi, Mazdak .
HYDROLOGICAL PROCESSES, 2014, 28 (04) :1962-1972
[3]   An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction [J].
Ajami, Newsha K. ;
Duan, Qingyun ;
Sorooshian, Soroosh .
WATER RESOURCES RESEARCH, 2007, 43 (01)
[4]  
[Anonymous], 1993, J IRRIG DRAIN ENG, V119, P429
[5]  
[Anonymous], 2006, WORKING DYNAMIC CROP
[6]  
[Anonymous], 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
[7]  
[Anonymous], USGS TECHNIQUES METH
[8]  
[Anonymous], 2008, GLOBAL SENSITIVITY A
[9]  
[Anonymous], 2000, Probability and Statistics series
[10]  
[Anonymous], 1 ARC 2 DIG EL MOD