Directional amplifier in an optomechanical system with optical gain

被引:63
作者
Jiang, Cheng [1 ,2 ]
Song, L. N. [1 ]
Li, Yong [1 ,3 ]
机构
[1] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[2] Huaiyin Normal Univ, Sch Phys & Elect Elect Engn, 111 West Chang Jiang Rd, Huaian 223300, Peoples R China
[3] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
INDUCED NON-RECIPROCITY; QUANTUM GROUND-STATE; INDUCED TRANSPARENCY; AMPLIFICATION; RESONATORS; MICRORESONATORS; NONRECIPROCITY; CIRCULATOR; MICROWAVE; SYMMETRY;
D O I
10.1103/PhysRevA.97.053812
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Directional amplifiers are crucial nonreciprocal devices in both classical and quantum information processing. Here we propose a scheme for realizing a directional amplifier between optical and microwave fields based on an optomechanical system with optical gain, where an active optical cavity and two passive microwave cavities are coupled to a common mechanical resonator via radiation pressure. The two passive cavities are coupled via hopping interaction to facilitate the directional amplification between the active and passive cavities. We obtain the condition of achieving optical directional amplification and find that the direction of amplification can be controlled by the phase differences between the effective optomechanical couplings. The effects of the gain rate of the active cavity and the effective coupling strengths on the maximum gain of the amplifier are discussed. We show that the noise added to this amplifier can be greatly suppressed in the large cooperativity limit.
引用
收藏
页数:9
相关论文
共 65 条
[1]   Spontaneous generation of photons in transmission of quantum fields in PT-symmetric optical systems [J].
Agarwal, G. S. ;
Qu, Kenan .
PHYSICAL REVIEW A, 2012, 85 (03)
[2]   Optomechanical systems as single-photon routers [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2012, 85 (02)
[3]   Electromagnetically induced transparency in mechanical effects of light [J].
Agarwal, G. S. ;
Huang, Sumei .
PHYSICAL REVIEW A, 2010, 81 (04)
[4]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[5]  
[Anonymous], 2009, Physics, DOI DOI 10.1103/PHYSICS.2.40
[6]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[7]   Mechanical on-chip microwave circulator [J].
Barzanjeh, S. ;
Wulf, M. ;
Peruzzo, M. ;
Kalaee, M. ;
Dieterle, P. B. ;
Painter, O. ;
Fink, J. M. .
NATURE COMMUNICATIONS, 2017, 8
[8]   Nonreciprocal reconfigurable microwave optomechanical circuit [J].
Bernier, N. R. ;
Toth, L. D. ;
Koottandavida, A. ;
Ioannou, M. A. ;
Malz, D. ;
Nunnenkamp, A. ;
Feofanov, A. K. ;
Kippenberg, T. J. .
NATURE COMMUNICATIONS, 2017, 8
[9]   On-chip optical isolation in monolithically integrated non-reciprocal optical resonators [J].
Bi, Lei ;
Hu, Juejun ;
Jiang, Peng ;
Kim, Dong Hun ;
Dionne, Gerald F. ;
Kimerling, Lionel C. ;
Ross, C. A. .
NATURE PHOTONICS, 2011, 5 (12) :758-762
[10]   QUANTUM LIMITS ON NOISE IN LINEAR-AMPLIFIERS [J].
CAVES, CM .
PHYSICAL REVIEW D, 1982, 26 (08) :1817-1839