Scaling analysis of negative differential thermal resistance

被引:31
作者
Chan, Ho-Kei [1 ]
He, Dahai [2 ]
Hu, Bambi [3 ]
机构
[1] Univ Nottingham, Sch Chem, Dept Phys & Theoret Chem, Nottingham NG7 2RD, England
[2] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[3] Univ Houston, Dept Phys, Houston, TX 77204 USA
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 05期
关键词
Thermal conductivity - Yarn - Heat transfer;
D O I
10.1103/PhysRevE.89.052126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Negative differential thermal resistance (NDTR) can be generated for any one-dimensional heat flow with a temperature-dependent thermal conductivity. In a system-independent scaling analysis, the general condition for the occurrence of NDTR is found to be an inequality with three scaling exponents: n(1)n(2) < -(1 + n(3)), where n(1) is an element of(-infinity,+infinity) describes a particular way of varying the temperature difference, and n(2) and n(3) describe, respectively, the dependence of the thermal conductivity on an average temperature and on the temperature difference. For cases with a temperature-dependent thermal conductivity, i.e. n(2) not equal 0, NDTR can always be generated with a suitable choice of n(1) such that this inequality is satisfied. The results explain the illusory absence of a NDTR regime in certain lattices and predict new ways of generating NDTR, where such predictions have been verified numerically. The analysis will provide insights for a designing of thermal devices, and for a manipulation of heat flow in experimental systems, such as nanotubes.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Double negative differential thermal resistance induced by nonlinear on-site potentials [J].
Ai, Bao-quan ;
Zhong, Wei-rong ;
Hu, Bambi .
PHYSICAL REVIEW E, 2011, 83 (05)
[2]   Heat conduction in deformable Frenkel-Kontorova lattices: Thermal conductivity and negative differential thermal resistance [J].
Ai, Bao-quan ;
Hu, Bambi .
PHYSICAL REVIEW E, 2011, 83 (01)
[3]   Nonlinear dynamics of the Frenkel-Kontorova model [J].
Braun, OM ;
Kivshar, YS .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 306 (1-2) :1-108
[4]   Space-charge-limited current fluctuations in organic semiconductors [J].
Carbone, A ;
Kotowska, BK ;
Kotowski, D .
PHYSICAL REVIEW LETTERS, 2005, 95 (23)
[5]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[6]   Breakdown of Fourier's law in nanotube thermal conductors [J].
Chang, C. W. ;
Okawa, D. ;
Garcia, H. ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (07)
[7]   NEW PHENOMENON IN NARROW GERMANIUM PARA-NORMAL-JUNCTIONS [J].
ESAKI, L .
PHYSICAL REVIEW, 1958, 109 (02) :603-604
[8]   Experimental Demonstration of a Bilayer Thermal Cloak [J].
Han, Tiancheng ;
Bai, Xue ;
Gao, Dongliang ;
Thong, John T. L. ;
Li, Baowen ;
Qiu, Cheng-Wei .
PHYSICAL REVIEW LETTERS, 2014, 112 (05)
[9]   Heat conduction in the nonlinear response regime: Scaling, boundary jumps, and negative differential thermal resistance [J].
He, Dahai ;
Ai, Bao-quan ;
Chan, Ho-Kei ;
Hu, Bambi .
PHYSICAL REVIEW E, 2010, 81 (04)
[10]   Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices [J].
He, Dahai ;
Buyukdagli, Sahin ;
Hu, Bambi .
PHYSICAL REVIEW B, 2009, 80 (10)