Rasmussen's spectral sequences and the slN-concordance invariants

被引:20
作者
Lewark, Lukas [1 ]
机构
[1] Univ Durham, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Knot concordance; Khovanov-Rozansky homologies; Slice genus; Rasmussen invariant; Spectral sequences; Pretzel knots; SLICE-BENNEQUIN INEQUALITY; HEEGAARD FLOER HOMOLOGY; OZSVATH-SZABO; CONCORDANCE INVARIANTS; MATRIX FACTORIZATIONS; KNOTS;
D O I
10.1016/j.aim.2014.04.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Combining known spectral sequences with a new spectral sequence relating reduced and unreduced sl(N)-homology yields a relationship between the HOMFLYPT-homology of a knot and its sl(N)-concordance invariants. As an application, some of the sl(N)-concordance invariants are shown to be linearly independent. (C) 2014 The Author. Published by Elsevier Inc.
引用
收藏
页码:59 / 83
页数:25
相关论文
共 54 条
[1]   THE RASMUSSEN INVARIANT OF A HOMOGENEOUS KNOT [J].
Abe, Tetsuya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (07) :2647-2656
[2]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[3]  
Bennequin D., 1982, Asterisque, V1, P87
[4]   TWISTING QUASI-ALTERNATING LINKS [J].
Champanerkar, Abhijit ;
Kofman, Ilya .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (07) :2451-2458
[5]   HOMOGENEOUS LINKS [J].
CROMWELL, PR .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1989, 39 :535-552
[6]   Man and machine thinking about the smooth 4-dimensional Poincare conjecture [J].
Freedman, Michael ;
Gompf, Robert ;
Morrison, Scott ;
Walker, Kevin .
QUANTUM TOPOLOGY, 2010, 1 (02) :171-208
[7]   SIGNATURE OF A LINK [J].
GORDON, CM ;
LITHERLAND, RA .
INVENTIONES MATHEMATICAE, 1978, 47 (01) :53-69
[8]  
Gornik B., 2004, NOTE KHOVANOV LINK C
[9]  
Greene J, 2010, MATH RES LETT, V17, P39
[10]  
H Wu, 2007, KHOVANOV ROZANSKY CO