Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals

被引:170
作者
Jullesson, David [1 ]
David, Florian [1 ]
Pfleger, Brian [2 ]
Nielsen, Jens [1 ,3 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, S-41296 Gothenburg, Sweden
[2] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[3] Novo Nordisk Fdn Ctr Biosustainabil, DK-2970 Horsholm, Denmark
基金
美国国家科学基金会;
关键词
Synthetic biology; Metabolic engineering; Cell factories; Saccharomyces cerevisiae; Escherichia coli; Industrial production; RIBOSOME BINDING-SITES; YEAST; MICROORGANISMS; BIOSYNTHESIS; EXPRESSION; PRINCIPLES; MOLECULES; DESIGN; LEVEL; RNAS;
D O I
10.1016/j.biotechadv.2015.02.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Industrial bio-processes for fine chemical production are increasingly relying on cell factories developed through metabolic engineering and synthetic biology. The use of high throughput techniques and automation for the design of cell factories, and especially platform strains, has played an important role in the transition from laboratory research to industrial production. Model organisms such as Saccharomyces cerevisiae and Escherichia coli remain widely used host strains for industrial production due to their robust and desirable traits. This review describes some of the bio-based fine chemicals that have reached the market, key metabolic engineering tools that have allowed this to happen and some of the companies that are currently utilizing these technologies for developing industrial production processes. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1395 / 1402
页数:8
相关论文
共 55 条
[1]   Total Synthesis of a Functional Designer Eukaryotic Chromosome [J].
Annaluru, Narayana ;
Muller, Heloise ;
Mitchell, Leslie A. ;
Ramalingam, Sivaprakash ;
Stracquadanio, Giovanni ;
Richardson, Sarah M. ;
Dymond, Jessica S. ;
Kuang, Zheng ;
Scheifele, Lisa Z. ;
Cooper, Eric M. ;
Cai, Yizhi ;
Zeller, Karen ;
Agmon, Neta ;
Han, Jeffrey S. ;
Hadjithomas, Michalis ;
Tullman, Jennifer ;
Caravelli, Katrina ;
Cirelli, Kimberly ;
Guo, Zheyuan ;
London, Viktoriya ;
Yeluru, Apurva ;
Murugan, Sindurathy ;
Kandavelou, Karthikeyan ;
Agier, Nicolas ;
Fischer, Gilles ;
Yang, Kun ;
Martin, J. Andrew ;
Bilgel, Murat ;
Bohutski, Pavlo ;
Boulier, Kristin M. ;
Capaldo, Brian J. ;
Chang, Joy ;
Charoen, Kristie ;
Choi, Woo Jin ;
Deng, Peter ;
DiCarlo, James E. ;
Doong, Judy ;
Dunn, Jessilyn ;
Feinberg, Jason I. ;
Fernandez, Christopher ;
Floria, Charlotte E. ;
Gladowski, David ;
Hadidi, Pasha ;
Ishizuka, Isabel ;
Jabbari, Javaneh ;
Lau, Calvin Y. L. ;
Lee, Pablo A. ;
Li, Sean ;
Lin, Denise ;
Linder, Matthias E. .
SCIENCE, 2014, 344 (6179) :55-58
[2]  
[Anonymous], METHODS IDENTIFYING
[3]  
[Anonymous], FEMS YEAST RES
[4]  
[Anonymous], ANN REV MICROBIOL
[5]  
[Anonymous], VALENCENE SYNTHASE
[6]  
[Anonymous], PROCESS PREPARING GE
[7]  
[Anonymous], YEARLY GROWTH TOTAL
[8]  
[Anonymous], 2013, COMPOSITIONS METHODS
[9]  
[Anonymous], COMPOSITIONS METHODS
[10]   Large-scale 13C-flux analysis reveals mechanistic principles of metabolic network robustness to null mutations in yeast -: art. no. R49 [J].
Blank, LM ;
Kuepfer, L ;
Sauer, U .
GENOME BIOLOGY, 2005, 6 (06)