A characterization of classical and semiclassical orthogonal polynomials from their dual polynomials

被引:20
作者
Vinet, L
Zhedanov, A [1 ]
机构
[1] Donetsk Inst Phys & Technol, Dept Phys, UA-83114 Donetsk, Ukraine
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2J5, Canada
关键词
classical orthogonal polynomials; semiclassical orthogonal polynomials;
D O I
10.1016/j.cam.2004.01.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study properties of the dual orthogonal polynomials (OP) introduced by de Boor and Saff and present a new characterization of the classical and semiclassical OP. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 10 条
[1]  
[Anonymous], 1991, CLASSICAL ORTHOGONAL, DOI DOI 10.1007/978-3-642-74748-9
[2]  
[Anonymous], LECTURE NOTES PHYSIC
[3]   Toda-type differential equations for the recurrence coefficients of orthogonal polynomials and Freud transformation [J].
Aptekarev, AI ;
Branquinho, A ;
Marcellan, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 78 (01) :139-160
[4]   Duality of orthogonal polynomials on a finite set [J].
Borodin, A .
JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (5-6) :1109-1120
[5]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[6]   FINITE SEQUENCES OF ORTHOGONAL POLYNOMIALS CONNECTED BY A JACOBI MATRIX [J].
DEBOOR, C ;
SAFF, EB .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1986, 75 :43-55
[7]   ON A NEW CHARACTERIZATION OF THE CLASSICAL ORTHOGONAL POLYNOMIALS [J].
DETTE, H ;
STUDDEN, WJ .
JOURNAL OF APPROXIMATION THEORY, 1992, 71 (01) :3-17
[8]   VARIATIONS AROUND CLASSICAL ORTHOGONAL POLYNOMIALS - CONNECTED PROBLEMS [J].
MARONI, P .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 48 (1-2) :133-155
[9]   PROLEGOMENA TO THE STUDY OF SEMICLASSICAL ORTHOGONAL POLYNOMIALS [J].
MARONI, P .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1987, 149 :165-184
[10]   On Toda lattices and orthogonal polynomials [J].
Peherstorfer, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 133 (1-2) :519-534