Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation

被引:84
作者
McLean, William [1 ]
Mustapha, Kassem [2 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
关键词
Non-uniform time steps; Memory term; Finite elements; CONVOLUTION QUADRATURE; DISCRETIZATION;
D O I
10.1007/s11075-008-9258-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We employ a piecewise-constant, discontinuous Galerkin method for the time discretization of a sub-diffusion equation. Denoting the maximum time step by k, we prove an a priori error bound of order k under realistic assumptions on the regularity of the solution. We also show that a spatial discretization using continuous, piecewise-linear finite elements leads to an additional error term of order h (2) max (1,logk (-aEuro parts per thousand 1)). Some simple numerical examples illustrate this convergence behaviour in practice.
引用
收藏
页码:69 / 88
页数:20
相关论文
共 10 条