Comparison of multivariate calibration techniques applied to experimental NIR data sets

被引:72
作者
Centner, V
Verdú-Andrés, J
Walczak, B
Jouan-Rimbaud, D
Despagne, F
Pasti, L
Poppi, R
Massart, DL
de Noord, OE
机构
[1] Free Univ Brussels, ChemoAC, B-1090 Brussels, Belgium
[2] Shell Int Chem BV, Shell Res & Technol Ctr, NL-1030 BN Amsterdam, Netherlands
[3] Silesian Univ, Katowice, Poland
[4] Univ Campinas, Campinas, Brazil
关键词
calibration; multivariate; method comparison; NIR; nonlinearity; clustering;
D O I
10.1366/0003702001949816
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The present study compares the performance of different multivariate calibration techniques applied to four near-infrared data sets when test samples are well within the calibration domain. Three types of problems are discussed: the nonlinear calibration, the calibration using heterogeneous data sets, and the calibration in the presence of irrelevant information in the set of predictors. Recommendations are derived from the comparison, which should help to guide a nonchemometrician through the selection of an appropriate calibration method for a particular type of calibration data. A flexible methodology is proposed to allow selection of an appropriate calibration technique for a given calibration problem.
引用
收藏
页码:608 / 623
页数:16
相关论文
共 73 条
[61]   WHICH PRINCIPAL COMPONENTS TO UTILIZE FOR PRINCIPAL COMPONENT REGRESSION [J].
SUTTER, JM ;
KALIVAS, JH ;
LANG, PM .
JOURNAL OF CHEMOMETRICS, 1992, 6 (04) :217-225
[62]   COMPARING THE PREDICTIVE ACCURACY OF MODELS USING A SIMPLE RANDOMIZATION TEST [J].
VANDERVOET, H .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 25 (02) :313-323
[63]  
VANHUFFEL S, 1988, TOTAL LEAST SQUARES
[64]   Correction of non-linearities in spectroscopic multivariate calibration by using transformed original variables.: Part II.: Application to principal component regression [J].
Verdù-Andrès, J ;
Massart, DL ;
Menardo, C ;
Sterna, C .
ANALYTICA CHIMICA ACTA, 1999, 389 (1-3) :115-130
[65]   Comparison of prediction- and correlation-based methods to select the best subset of principal components for principal component regression and detect outlying objects [J].
Verdu-Andres, J ;
Massart, DL .
APPLIED SPECTROSCOPY, 1998, 52 (11) :1425-1434
[67]   Noise suppression and signal compression using the wavelet packet transform [J].
Walczak, B ;
Massart, DL .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1997, 36 (02) :81-94
[68]   The radial basis functions - Partial least squares approach as a flexible non-linear regression technique [J].
Walczak, B ;
Massart, DL .
ANALYTICA CHIMICA ACTA, 1996, 331 (03) :177-185
[69]   NEW APPROACH FOR DISTANCE MEASUREMENT IN LOCALLY WEIGHTED REGRESSION [J].
WANG, ZY ;
ISAKSSON, T ;
KOWALSKI, BR .
ANALYTICAL CHEMISTRY, 1994, 66 (02) :249-260
[70]   SPLINE FUNCTIONS IN DATA-ANALYSIS [J].
WOLD, S .
TECHNOMETRICS, 1974, 16 (01) :1-11