von Neumann entropy and localization-delocalization transition of electron states in quantum small-world networks

被引:25
作者
Gong, Longyan
Tong, Peiqing [1 ]
机构
[1] Nanjing Normal Univ, Dept Phys, Nanjing 210097, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Dept Math & Phys, Nanjing 210003, Jiangsu, Peoples R China
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 05期
关键词
D O I
10.1103/PhysRevE.74.056103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The von Neumann entropy for an electron in periodic, disorder, and quasiperiodic quantum small-world networks (QSWN's) is studied numerically. For the disorder QSWN's, the derivative of the spectrum-averaged von Neumann entropy is maximal at a certain density of shortcut links p(*), which can be as a signature of the localization-delocalization transition of electron states. The transition point p(*) is agreement with that obtained by the level statistics method. For the quasiperiodic QSWN's, it is found that there are two regions of the potential parameter. The behaviors of electron states in different regions are similar to that of periodic and disorder QSWN's, respectively.
引用
收藏
页数:6
相关论文
共 24 条
[1]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[2]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[3]   Small-world networks:: Evidence for a crossover picture [J].
Barthélémy, M ;
Amaral, LAN .
PHYSICAL REVIEW LETTERS, 1999, 82 (15) :3180-3183
[4]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[5]   ANDERSON TRANSITION, SCALING, AND LEVEL STATISTICS IN THE PRESENCE OF SPIN-ORBIT-COUPLING [J].
EVANGELOU, SN .
PHYSICAL REVIEW LETTERS, 1995, 75 (13) :2550-2553
[6]   Quantum computing of delocalization in small-world networks [J].
Giraud, O ;
Georgeot, B ;
Shepelyansky, DL .
PHYSICAL REVIEW E, 2005, 72 (03)
[7]   Entanglement and quantum phase transition in the extended Hubbard model [J].
Gu, SJ ;
Deng, SS ;
Li, YQ ;
Lin, HQ .
PHYSICAL REVIEW LETTERS, 2004, 93 (08) :086402-1
[8]   METAL-INSULATOR-TRANSITION AND SCALING FOR INCOMMENSURATE SYSTEMS [J].
KOHMOTO, M .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1198-1201
[9]   LOCALIZATION PROBLEM IN ONE DIMENSION - MAPPING AND ESCAPE [J].
KOHMOTO, M ;
KADANOFF, LP ;
TANG, C .
PHYSICAL REVIEW LETTERS, 1983, 50 (23) :1870-1872
[10]   Exact results and scaling properties of small-world networks [J].
Kulkarni, RV ;
Almaas, E ;
Stroud, D .
PHYSICAL REVIEW E, 2000, 61 (04) :4268-4271