Machine-Learning Algorithms Predict Graft Failure After Liver Transplantation

被引:124
作者
Lau, Lawrence [1 ]
Kankanige, Yamuna [2 ]
Rubinstein, Benjamin [2 ]
Jones, Robert [1 ]
Christophi, Christopher [1 ]
Muralidharan, Vijayaragavan [1 ]
Bailey, James [2 ]
机构
[1] Austin Hosp, Dept Surg, Melbourne, Vic, Australia
[2] Univ Melbourne, Dept Comp & Informat Syst, Melbourne, Vic, Australia
关键词
VARIABLE IMPORTANCE MEASURE; RECIPIENT RISK-FACTORS; NEURAL-NETWORKS; RANDOM FORESTS; PATIENT SURVIVAL; D-MELD; DONOR; MODEL; CLASSIFICATION; DISEASE;
D O I
10.1097/TP.0000000000001600
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background. The ability to predict graft failure or primary nonfunction at liver transplant decision time assists utilization of scarce resource of donor livers, while ensuring that patients who are urgently requiring a liver transplant are prioritized. An index that is derived to predict graft failure using donor and recipient factors, based on local data sets, will be more beneficial in the Australian context. Methods. Liver transplant data from the Austin Hospital, Melbourne, Australia, from 2010 to 2013 has been included in the study. The top 15 donor, recipient, and transplant factors influencing the outcome of graft failure within 30 days were selected using a machine learning methodology. An algorithm predicting the outcome of interest was developed using those factors. Results. Donor Risk Index predicts the outcome with an area under the receiver operating characteristic curve (AUC-ROC) value of 0.680 (95% confidence interval [CI], 0.669-0.690). The combination of the factors used in Donor Risk Index with the model for end-stage liver disease score yields an AUC-ROC of 0.764 (95% CI, 0.756-0.771), whereas survival outcomes after liver transplantation score obtains an AUC-ROC of 0.638 (95% CI, 0.632-0.645). The top 15 donor and recipient characteristics within random forests results in an AUC-ROC of 0.818 (95% CI, 0.812-0.824). Conclusions. Using donor, transplant, and recipient characteristics known at the decision time of a transplant, high accuracy in matching donors and recipients can be achieved, potentially providing assistance with clinical decision making.
引用
收藏
页码:E125 / E132
页数:8
相关论文
共 53 条
[1]  
Acuña E, 2004, ST CLASS DAT ANAL, P639
[2]  
Adya M, 1998, J FORECASTING, V17, P481, DOI 10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.3.CO
[3]  
2-H
[4]   Enriched random forests [J].
Amaratunga, Dhammika ;
Cabrera, Javier ;
Lee, Yung-Seop .
BIOINFORMATICS, 2008, 24 (18) :2010-2014
[5]   Expanded criteria donor grafts for deceased donor liver transplantation under the MELD system: A decision analysis [J].
Amin, MG ;
Wolf, MP ;
TenBrook, JA ;
Freeman, RB ;
Cheng, SJ ;
Pratt, DS ;
Wong, JB .
LIVER TRANSPLANTATION, 2004, 10 (12) :1468-1475
[6]   A balanced iterative random forest for gene selection from microarray data [J].
Anaissi, Ali ;
Kennedy, Paul J. ;
Goyal, Madhu ;
Catchpoole, Daniel R. .
BMC BIOINFORMATICS, 2013, 14
[7]  
[Anonymous], 1996, OUT OF BAG ESTIMATIO
[8]  
[Anonymous], 7 C ART INT ITS APPL
[9]   Bootstrap methods for developing predictive models [J].
Austin, PC ;
Tu, JV .
AMERICAN STATISTICIAN, 2004, 58 (02) :131-137
[10]   Balancing Donor and Recipient Risk Factors in Liver Transplantation: The Value of D-MELD With Particular Reference to HCV Recipients [J].
Avolio, A. W. ;
Cillo, U. ;
Salizzoni, M. ;
De Carlis, L. ;
Colledan, M. ;
Gerunda, G. E. ;
Mazzaferro, V. ;
Tisone, G. ;
Romagnoli, R. ;
Caccamo, L. ;
Rossi, M. ;
Vitale, A. ;
Cucchetti, A. ;
Lupo, L. ;
Gruttadauria, S. ;
Nicolotti, N. ;
Burra, P. ;
Gasbarrini, A. ;
Agnes, S. ;
Lirosi, M. C. ;
Miele, L. ;
Pompili, M. ;
Siciliano, M. ;
Perilli, V. ;
Gaspari, R. ;
Castagneto, M. ;
Tandoi, F. ;
Mangoni, I. ;
Belli, L. ;
Pinna, A. D. ;
Cescon, M. ;
Gridelli, B. ;
Li Petri, S. ;
Volpes, R. ;
Pinelli, D. ;
Fagiuoli, S. ;
Montalti, R. ;
Regalia, E. ;
Rossi, G. ;
Antonelli, B. ;
Berloco, P. ;
Lai, Q. ;
Risaliti, A. ;
Nicolini, D. ;
Valente, U. ;
Gelli, M. ;
Morelli, N. ;
Zamboni, F. ;
Tondolo, V. ;
Ettorre, G. M. .
AMERICAN JOURNAL OF TRANSPLANTATION, 2011, 11 (12) :2724-2736