Regularity of p(.)-superharmonic functions, the Kellogg property and semiregular boundary points

被引:6
作者
Adamowicz, Tomasz [1 ,2 ]
Bjorn, Anders [1 ]
Bjorn, Jana [1 ]
机构
[1] Linkoping Univ, Dept Math, SE-58183 Linkoping, Sweden
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 06期
基金
瑞典研究理事会;
关键词
Comparison principle; Kellogg property; Isc-regularized; Nonlinear potential theory; Nonstandard growth equation; Obstacle problem; p(.)-harmonic; Quasicontinuous; Regular boundary point; Removable singularity; Semiregular point; Sobolev space; Strongly irregular point; p(.)-superharmonic; p(.)-supersolution; Trichotomy; Variable exponent; P-HARMONIC FUNCTIONS; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; OBSTACLE PROBLEM;
D O I
10.1016/j.anihpc.2013.07.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study various boundary and inner regularity questions for p(.)-(super)harmonic functions in Euclidean domains. In particular, we prove the Kellogg property and introduce a classification of boundary points for p(.)-harmonic functions into three disjoint classes: regular, semiregular and strongly irregular points. Regular and especially semiregular points are characterized in many ways. The discussion is illustrated by examples. Along the way, we present a removability result for bounded p(.)-harmonic functions and give some new characterizations of W-0(1,p(.)) spaces. We also show that p(.)-superharmonic functions are lower semicontinuously regularized, and characterize them in terms of lower semicontinuously regularized supersolutions. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1131 / 1153
页数:23
相关论文
共 30 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Harnack's inequality and the strong p(.)-Laplacian [J].
Adamowicz, Tomasz ;
Hasto, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) :1631-1649
[4]   Mappings of Finite Distortion and PDE with Nonstandard Growth [J].
Adamowicz, Tomasz ;
Hasto, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) :1940-1965
[5]   Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition [J].
Alkhutov, YA ;
Krasheninnikova, OV .
IZVESTIYA MATHEMATICS, 2004, 68 (06) :1063-1117
[6]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[7]  
Bjorn A, 2011, EMS TRACTS MATH, V17, P1, DOI 10.4171/099
[8]  
Björn A, 2003, J REINE ANGEW MATH, V556, P173
[9]  
Bjorn A., BOUNDARY REGUL UNPUB
[10]   A regularity classification of boundary points for p-harmonic functions and quasiminimizers [J].
Bjorn, Anders .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) :39-47