Molecular dynamics study of nanocomposite polymer electrolyte based on poly(ethylene oxide)/LiBF4

被引:31
作者
Borodin, O
Smith, GD
Bandyopadhyaya, R
Redfern, P
Curtiss, LA
机构
[1] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[2] Univ Utah, Dept Chem & Fuels Engn, Salt Lake City, UT 84112 USA
[3] Argonne Natl Lab, Div Chem, Argonne, IL 60439 USA
[4] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
关键词
D O I
10.1088/0965-0393/12/3/S02
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Interactions of Li+ and BF4- ions with TiO2 clusters were investigated using ab initio quantum chemistry methods. Classical force fields have been developed for poly(ethylene oxide)/LiBF4/TiO2, and molecular dynamics simulations have been performed on poly(ethylene oxide)/LiBF4 polymer electrolyte with and without embedded TiO2 nanoparticles using the developed force field. Addition of a TiO2 nanoparticle to PEO/LiBF4 solid polymer electrolyte resulted in the formation of a highly structured layer with a thickness of 5-6 Angstrom that had more than an order of magnitude slower mobility than that of bulk PEO/LiBF4. The PEO and ions in the layers extending from 6 to 15 Angstrom from the TiO2 nanoparticle also revealed some structuring and reduced dynamics, whereas the PEO/LiBF4 located further than 15 Angstrom was basically unaffected by the presence of the TiO2 nanoparticle. Both cations and anions tended to form a region with an increased concentration in the interfacial layers extending from 5 to 15 Angstrom. No ions were dissolved by the first interfacial layer of PEO. Addition of a nanoparticle with soft-repulsion interactions with PEO resulted in the formation of a PEO interfacial layer with reduced PEO density but increased ion concentration. The PEO and ion mobility in the interfacial layer next to the soft-repulsive nanoparticle were higher than those of bulk PEO/LiBF4 by 20-50%, whereas the conductivity of the nanocomposite electrolyte with the soft-repulsive particle increased only by 10%.
引用
收藏
页码:S73 / S89
页数:17
相关论文
共 53 条
[1]   Molecular dynamics study of polymer melt confined between walls [J].
Aoyagi, T ;
Takimoto, J ;
Doi, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (01) :552-559
[2]   PEO-carbon composite lithium polymer electrolyte [J].
Appetecchi, GB ;
Passerini, S .
ELECTROCHIMICA ACTA, 2000, 45 (13) :2139-2145
[3]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - II. Application in rechargeable batteries [J].
Appetecchi, GB ;
Croce, F ;
Mastragostino, M ;
Scrosati, B ;
Soavi, F ;
Zanelli, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4133-4135
[4]   Composite polymer electrolytes with improved lithium metal electrode interfacial properties - I. Electrochemical properties of dry PEO-LiX systems [J].
Appetecchi, GB ;
Croce, F ;
Dautzenberg, G ;
Mastragostino, M ;
Ronci, F ;
Scrosati, B ;
Soavi, F ;
Zanelli, A ;
Alessandrini, F ;
Prosini, PP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (12) :4126-4132
[5]  
BASCHNAGEL J, 2000, POLYM SURFACES INTER
[6]   MICROSCOPIC INVESTIGATION OF IONIC-CONDUCTIVITY IN ALKALI-METAL SALTS POLY(ETHYLENE OXIDE) ADDUCTS [J].
BERTHIER, C ;
GORECKI, W ;
MINIER, M ;
ARMAND, MB ;
CHABAGNO, JM ;
RIGAUD, P .
SOLID STATE IONICS, 1983, 11 (01) :91-95
[7]   Conductivity in amorphous polyether nanocomposite materials [J].
Best, AS ;
Ferry, A ;
MacFarlane, DR ;
Forsyth, M .
SOLID STATE IONICS, 1999, 126 (3-4) :269-276
[8]   Molecular dynamics simulations of poly(ethylene oxide)/LiI melts. 1. Structural and conformational properties [J].
Borodin, O ;
Smith, GD .
MACROMOLECULES, 1998, 31 (23) :8396-8406
[9]  
Borodin O, 2001, J COMPUT CHEM, V22, P641, DOI 10.1002/jcc.1033
[10]   Force field development and MD simulations of poly(ethylene oxide)/LiBF4 polymer electrolytes [J].
Borodin, O ;
Smith, GD ;
Douglas, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (28) :6824-6837