Quasi-Newton methods for implicit black-box FSI coupling

被引:40
作者
Bogaers, A. E. J. [1 ,2 ]
Kok, S. [3 ]
Reddy, B. D. [4 ,5 ]
Franz, T. [4 ,6 ,7 ]
机构
[1] CSIR, Pretoria, South Africa
[2] Univ Cape Town, Dept Mech Engn, ZA-7700 Rondebosch, South Africa
[3] Univ Pretoria, Dept Mech & Aeronaut Engn, ZA-0002 Pretoria, South Africa
[4] Univ Cape Town, Ctr Res Computat & Appl Mech, ZA-7700 Rondebosch, South Africa
[5] Univ Cape Town, Dept Math & Appl Math, ZA-7700 Rondebosch, South Africa
[6] Univ Cape Town, Dept Human Biol, Div Biomed Engn, ZA-7700 Rondebosch, South Africa
[7] Univ Cape Town, Res Off, ZA-7700 Rondebosch, South Africa
关键词
Fluid-structure interactions; Partitioned solver; Black-box solver; Quasi-Newton methods; Implicit coupling; FLUID-STRUCTURE INTERACTION; ALGORITHMS; FLOW; SIMULATION; MODEL;
D O I
10.1016/j.cma.2014.06.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we introduce a new multi-vector update quasi-Newton (MVQN) method for implicit coupling of partitioned, transient FSI solvers. The new quasi-Newton method facilitates the use of 'black-box' field solvers and under certain circumstances can be demonstrated to provide Newton-like convergence behaviour for strongly coupled FSI benchmark problems. We demonstrate the superior convergence behaviour and robust nature of the MVQN method compared to other well known quasi-Newton coupling schemes, including the least squares reduced order modelling (IBQN-LS) scheme, the classical rank-1 update Broyden's method and fixed point iterations with dynamic relaxation. The quasi-Newton methods are analysed on a suite of strongly coupled FSI problems, including but not limited to, internal, incompressible flow through a flexible tube where the solid density is an order of magnitude lower than the fluid density. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 132
页数:20
相关论文
共 33 条
[1]  
[Anonymous], 2010, OpenFOAM the open source CFD toolbox, user's manual
[2]   Fluid-structure partitioned procedures based on Robin transmission conditions [J].
Badia, Santiago ;
Nobile, Fabio ;
Vergara, Christian .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (14) :7027-7051
[3]   Benchmark problems for incompressible fluid flows with structural interactions [J].
Bathe, Klaus-Juergen ;
Ledezma, Gustavo A. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :628-644
[4]   A monolithical fluid-structure interaction algorithm applied to the piston problem [J].
Blom, FJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 167 (3-4) :369-391
[5]  
Bogaers A.E., 2012, 8 S AFR C COMP APPL
[6]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[7]   Added-mass effect in the design of partitioned algorithms for fluid-structure problems [J].
Causin, P ;
Gerbeau, JF ;
Nobile, F .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (42-44) :4506-4527
[8]   Mesh deformation based on radial basis function interpolation [J].
de Boer, A. ;
van der Schoot, M. S. ;
Bijl, H. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :784-795
[9]   Multi-level quasi-Newton coupling algorithms for the partitioned simulation of fluid-structure interaction [J].
Degroote, Joris ;
Vierendeels, Jan .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 225 :14-27
[10]   Simulation of fluid structure interaction with the interface artificial compressibility method [J].
Degroote, Joris ;
Swillens, Abigail ;
Bruggeman, Peter ;
Haelterman, Robby ;
Segers, Patrick ;
Vierendeels, Jan .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2010, 26 (3-4) :276-289