Classification of integral expanding matrices and self-affine tiles

被引:22
作者
Kirat, I [1 ]
Lau, KS
机构
[1] Sakarya Univ, Dept Math, Sakarya, Turkey
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
关键词
D O I
10.1007/s00454-001-0091-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let T be a self-affine tile that is generated by an expanding integral matrix A and a digit set D. It is known that many properties of T are invariant under the Z-similarity of the matrix A. In [LW1] Lagarias and Wang showed that if A is a 2 x 2 expanding matrix with \det(A)\ = 2, then the Z-similar class is uniquely determined by the characteristic polynomial of A. This is not true if \det(A)\ > 2. In this paper we give complete classifications of the Z-similar classes for the cases \det(A)\ = 3, 4, 5. We then make use of the classification for \det(A)\ = 3 to consider the digit set D of the tile and show that mu(T) > 0 if and only if D is a standard digit set. This reinforces the conjecture in [LW3] on this.
引用
收藏
页码:49 / 73
页数:25
相关论文
共 18 条
[1]   CLASSIFICATION OF SELF-AFFINE LATTICE TILINGS [J].
BANDT, C ;
GELBRITCH, G .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 50 :581-593
[3]  
Falconer K., 1990, FRACTAL GEOMETRY MAT, V2
[4]   MULTIRESOLUTION ANALYSIS, HAAR BASES, AND SELF-SIMILAR TILINGS OF RN [J].
GROCHENIG, K ;
MADYCH, WR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :556-568
[5]  
Grochenig K., 1994, J FOURIER ANAL APPL, V1, P131, DOI DOI 10.1007/S00041-001-4007-6
[6]  
Hacon D., 1994, EXP MATH, V3, P317, DOI 10.1080/10586458.1994.10504300
[7]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747
[8]  
Kenyon R, 1999, INDIANA U MATH J, V48, P25
[9]   On the connectedness of self-affine tiles [J].
Kirat, I ;
Lau, KS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 :291-304
[10]  
Lagarias J., 1998, J Fourier Anal Appl, V2, P1, DOI [10.1007/s00041-001-4019-2, DOI 10.1007/S00041-001-4019-2]