Demystification of the Geometric Fourier Transforms

被引:0
作者
Bujack, Roxana [1 ]
Scheuermann, Gerik [1 ]
Hitzer, Eckhard [2 ]
机构
[1] Univ Leipzig, Inst Informat, Abt Bild & Signalverarbeitung, Augustupl 10, D-04109 Leipzig, Germany
[2] Int Christian Univ, Dept Mat Sci, Coll Liberal Arts, Tokyo 181, Japan
来源
11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013) | 2013年 / 1558卷
关键词
geometric algebra; Clifford algebra; Fourier transform; trigonometric transform; convolution theorem; HYPERCOMPLEX FOURIER; FIELDS;
D O I
10.1063/1.4825543
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As it will turn out in this paper, the recent hype about most of the Clifford Fourier transforms is not thoroughly worth the pain. Almost every one that has a real application is separable and these transforms can be decomposed into a sum of real valued transforms with constant multivecor factors. This fact makes their interpretation, their analysis, and their implementation almost trivial.
引用
收藏
页码:525 / 528
页数:4
相关论文
共 21 条
[11]  
De Bie Hendrik, 2010, J FOURIER A IN PRESS, P1198
[12]  
Ebling J, 2006, THESIS
[13]   Hypercomplex Fourier transforms of color images [J].
Ell, Todd A. ;
Sangwine, Stephen J. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (01) :22-35
[14]  
Ell Todd A., 2000, IMAGE PROCESSING 2 M, P430
[15]  
Ell Todd A., 1993, P 32 IEEE C DEC CONT, V2, P1830
[16]  
HITZER E, 2013, TRENDS MATH, V27, P123
[17]  
Hitzer Eckhard, 2012, EL P AGACSE 2012 LA
[18]   Clifford Fourier transform on multivector fields and uncertainty principles for dimensions n=2 (mod 4) and n=3 (mod 4) [J].
Hitzer, Eckhard M. S. ;
Mawardi, Bahn .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (3-4) :715-736
[19]   Quaternion fourier transform on quaternion fields and generalizations [J].
Hitzer, Eckhard M. S. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) :497-517
[20]   TRIVECTOR FOURIER TRANSFORMATION AND ELECTROMAGNETIC-FIELD [J].
JANCEWICZ, B .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) :1847-1852